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Abstract—In process engineering, a fast and efficient fault
detection and diagnosis (FDD) system is an essential component to
improve both safety and productivity losses under abnormal con-
ditions. Over the years, techniques based on models derived from
process historical data, specially under a probabilistic framework,
have gain a lot of attention. In this paper, probabilistic principal
component analysis (PPCA) mixture models are used to cope
with the FDD task. A batch-incremental method is proposed for
statistical process monitoring, seeking to detect and learn new
faulty behaviour, or yet, diagnose an already known fault. The
proposed methodology was applied to the Tennessee Eastman
Process under a closed-loop control, and it has shown robust and
reliable results.

I. INTRODUCTION

Every year the industry loses considerable sums of money
due to operations under faulty conditions, whether via pro-
ductivity losses or equipment crashes. There is also the safety
problem which in some plants can be a serious concern. Under
these premises, a good, fast and efficient fault detection and
diagnosis (FDD) system is essential to minimize such prob-
lems. Modelling methods for FDD can be broadly classified
in quantitative model-based methods, qualitative model-based
methods, and process history based methods [1], [2], [3].

Over the years, methods based on processes historical data
have gained great attention. One of the reasons is that these
methods do not demand knowledge on the physics of the
process, which can be very hard to obtain in complex systems.
They rely only on acquired data during plant operation. Some
examples of history based methods are neuro-fuzzy models [4],
[5], neural networks [6], immune systems [7], [8], statistical
methods [9], [10] and expert systems [11], [12].

Multivariate statistical process monitoring (MSPM) for
fault detection has received considerable attention lately, both
as a research field and in industrial applications [13]. The basis
of MSPM is to find a statistical model of the normal operating
condition, followed by the calculation of a monitoring statistics
and its confidence bound. An abnormal condition is detected
when the monitoring statistics exceed the confidence bound.
For decades, the principal component analysis (PCA) for
MSPM was subject of intense study and research [14], [15],
[16].

The PCA based MSPM assumes a multivariate Gaussian
distribution of the score, which rarely apply for a complex or
non-linear process. To solve this problem, extensive research

on a probabilistic framework of the PCA resulted in the
probabilistic PCA (PPCA) [17], [18], [19]. Now with the
statistical model of the PPCA, the generalisation to a mixture
model allowed the development of more complex and complete
models [21], so the MSPM became more thorough and robust.

Most of the existing offline historical data FDD methods
require data from all possible operation conditions of the mod-
elled plant, which is not a realistic scenario. Thus, the ability to
learn a new behaviour incrementally is an important feature for
a FDD system [1]. In this work, a batch-incremental method
is proposed, which is able to learn new faulty conditions
every time a data batch containing yet an unknown fault is
detected. The algorithm begins training a mixture of PPCA
to model only the normal operation condition of the plant,
which usually has largely available data. Then data batches are
analysed incrementally, looking for abnormal behaviour. Once
found, the abnormal samples are used to fit another mixture
of PPCA, modelling the new faulty condition. When a another
batch containing the same condition is presented, the system
is able to diagnose it, since it has already learnt this faulty
condition.

The rest of the paper is organised as follows: Section II
describes the PPCA, along with its generalisation for mixture
modelling and an greedy algorithm used to find the ideal
number of mixture components. Next, the proposed batch-
incremental FDD method is described in the Section III.
Numerical experiments results are shown in the Section IV,
in which the Tennessee Eastman Process under closed loop
control was considered. And finally, Section V concludes
the paper and suggests further works, complementing and
improving the methodology.

II. PROBABILISTIC PCA

Principal component analysis (PCA) is a largely used
model in data analysis and processing given its dimensionality
reduction property. It can be summarised as the optimal
projection into the principal subspace which maximizes the
variance in the projected space [20]. However, the classic
PCA approach does not associate a probabilistic model to
the observed data. With that in mind, a PCA formulation
under a probabilistic framework has been proposed based on
a Gaussian latent variable model, closely related with the
statistical factor analysis [17].

The PCA projects a d-dimensional observed data t into



a corresponding q-dimensional vector of latent variables x,
maximising the variance, such as,

t =Wx+ µ+ ε , (1)

where the d× q matrix W is composed by the q eigenvectors
associated with the q highest eigenvalues of the covariance ma-
trix, the parameter µ permits to work with non-zero mean data
and ε is a noise. The probabilistic principal component analysis
(PPCA) model assumes, basically, the latent variable to be
independent and Gaussian with unit variance, x ∼ N (0, I),
and the error noise to be isotropic, ε ∼ N (0, σ2I) [17].
Leading to a conditional probability distribution over the t-
space given by

p(t|x) ∼ N (Wx+ µ, σ2I) . (2)

The marginal distribution for the observed data t can be
derived and found likewise Gaussian:

p(t) ∼ N (µ,C) , (3)

in which C = WWT + σ2I is the covariance matrix of the
model. In comparison with a multivariate Gaussian model,
where the sample covariance d × d matrix S needs to be
estimated, the PPCA covariance matrix, C, depends only on
W and σ2. Therefore, the PPCA can be understood as a
way to constrain the model complexity via the selection of
q < d. In other words, the number of free parameters in C,
dq+1− q(q−1)/2, is smaller than the d(d+1)/2 parameters
of S, if q < d [17]. All model parameters (W , µ and σ2) can
be estimated using the maximum likelihood estimation (MLE)
method [17].

This probabilistic perspective for the principal component
analysis brings a number of important advantages [17], but in
the context of this paper two stand out among them. Firstly, it
provides a single statistic for fault detection, as opposed to both
the T 2 [14], which can be interpreted as a measuring of the
systematic variations of the process, and the SPE [15], related
to the lowest eigenvalues and associated to noise measurements
[16], in the classical PCA. Since the T 2 and the Q statistics
monitor different kinds of faults and use different measuring
units, they can not be directly unified into only one index [18].
On the other hand, in the PPCA model, a data point t should
be considered out-of-control (out of the given model) when

M2 = (t− µ)TC−1(t− µ) > X 2
d (β) , (4)

where X 2
d (β) is the β-fractile of the chi-squared distribution

with d degrees of freedom [19].

Secondly, although the PPCA is a linear model, it can be
easily extended to a mixtures of such models, allowing to work
with non-linear operation conditions or multiple operation
points conditions.

A. Mixture Model

A PPCA mixture model with k mixture components is
defined as [21]:

p(t) =

k∑
i=1

πip(t|i) , (5)

where p(t|i) ∼ N (µi, Ci) is the distribution of the i-th
component, which Ci = WiW

T
i + σ2

i I , and the mixing
weights sum to the unity,

∑
i πi = 1. Therefore, each of

the k components can be understood as a local model, which
combined represents the whole data set. Although there is not a
closed-form expression for the parameters estimation, the MLE
can be iteratively reached through the EM algorithm [21].

The motivation to use a mixture model in the FDD context
is to monitor a process with multiple operating modes and/or
a process in which an operating mode does not have only
one single Gaussian scattering pattern in the observed variable
space.

A confidence bound can be used with the PPCA mixture
model to reason whether or not a data point belongs to a given
model. It can be used, for example, a numerical approach such
as the following Monte Carlo simulation method [22]:

1) Generate Ns samples, {tj | j = 1, ..., Ns}, from p(t)
given by Eq. 5.

2) Compute the likelihood of these samples as p(tj).
3) Sort p(tj) of all the j = 1, ..., Ns samples.
4) The confidence bound is given by h = p(tl), where

l = βNs.

Hence, a given data point ti is considered out of control,
with β-level of significance, if p(ti) < h, or equivalently, if
p(ti) > −h. Typically, the number of Monte Carlo samples,
Ns, has to be large, and can be determined heuristically. If the
training dataset used to fit the PPCA mixture model is large
enough, the confidence bound can be calculated based on those
values.

B. Greedy Learning of a Mixture Model

The EM algorithm for a mixture model estimation suffers
from two main drawbacks [23]. Firstly, the number of mixture
components k has to be set a priori, requiring a knowledge
of the dataset in hand, which is not always available or
possible. Secondly, the parameters initialisation for the iterative
estimation affects the final result. Therefore, the EM algorithm
can converge to a local optimum of the parameter space.

In the PPCA mixture model, a third problem arises, that is
the choice of the value q, the number of principal components,
which can actually vary from one mixture component to
another.

Based on a greedy learning algorithm for Gaussian mixture
models [24], a greedy learning algorithm for fitting a PPCA
mixture model is proposed. The basic idea is, instead of
starting off with a random initialisation of the components,
the model is built component-wise, using a top-down approach.
That means, initially, an optimal one-component PPCA mix-
ture is computed. Then, a new component is inserted and the



whole new mixture model is trained via EM algorithm until
convergence. This process is repeated, adding new components
at each iteration, until a stopping criterion is reached.

With this greedy method, the EM algorithm convergence
problem is avoided by adding optimal new components, as
explained later. Another advantage of the top-down approach
is that since the one-component PPCA mixture model has
a closed-form expression for the MLE, it does not suffer
from random initialisation problems. Finally, the number q of
principal components is chosen to be equal for all mixture
components, and defined through the analysis of the retained
variance [25].

Let fk denote a k-component PPCA mixture model, in
which each component is defined by p(t|i) ∼ N (µi, Ci). The
general scheme for the greedy learning of the PPCA mixture
model is as follows:

1) Define q, the number of principal components,
through the retained variance analysis [25].

2) Set k = 1 and compute fk, the optimal one-
component PPCA mixture model.

3) Create km candidate components, pc(t|j) ∼
N (µj , Cj) ∀j = 1, ..., km with their respective
weights πj .

4) Select the optimal new component, pc(t|j∗) ∼
N (µj∗ , Cj∗), and the corresponding mixing weight
,πj∗ , that maximizes the new log-likelihood of the
whole model:

j∗ = argmax
j

n∑
i=1

log [(1− πj)fk(ti) + πjpc(ti|j)] ,

(6)
5) Set fk+1 = (1−πj∗)fk+πj∗pc(t|j∗) and k = k+1.
6) Update fk with EM algorithm until convergence.
7) If stoping criterion is met (kmax, for example) then

exit, else go to step 3.

Clearly, the candidates creation and selection is the crucial
step of the previous algorithm. In [24], the author describes a
search heuristic for finding the optimal new mixtures compo-
nent in Gaussian mixture model. This algorithm was adapted
to the PPCA mixture model scenario, and the search strategy
can be summarised as follows:

1) Given a k-component mixture model fk, a fixed
number of m candidate is created for each mixture
component. In other words, the number of candidates
increases linearly with k, creating km candidates.

2) The data set Tn is partitioned in k disjoint subsets,
based on the mixture components posterior distribu-
tions, such that Aj = {ti ∈ Tn : j = argmaxj p(ti |
j)}, ∀j = 1, 2, ..., k.

3) For each subset Aj , m candidates are created, two
at a time. To generate candidate from Aj , two data
points in Aj are randomly selected, tl and tr.

4) Aj is again separated into two disjoint subsets, Ajl
and Ajr, with the nearest neighbours of tl and tr,
respectively.

5) Two PPCA candidate models are finally created based
on the data in Ajl and Ajr, directly with the MLE.
The mixing weight of each one of the candidates

is proportional to the size of its subset, πjl =

πj
size(Ajl)
size(Aj)

and πjr = πj
size(Ajr)
size(Aj)

, and, therefore,
they sum up to the weight of the original mixture
component, such that πj = πjl + πjr,

The described method achieves two important observations
discussed in [24]. The size of the new component, in general,
should be smaller than the original mixture component, and as
the model fk grows, the search for an optimal new component
should become more thorough.

This greedy approach is mainly focused on finding k, i.e.,
the ideal number of components in the PPCA mixture. After
the algorithm runs for several values of k, it is time to reason
on which is the ideal value. Through the analysis of all the
mixture models created, k can be chosen, for example, via the
Akaike Information Criteria, Maximum Likelihood Ratio Test,
Bayesian Information Criteria, etc.

An example is given in the Figure 1, for a 2-dimension
artificially generated data from a 3 component Gaussian mix-
ture model. It shows steps from the greedy algorithm, with
a mixture model with 3 and 5 components, and the log-
likelihood, AIC and BIC curves of the fitted models, for
k = 1, · · · , 10, for analysis. It is clear that for this given data,
k = 3 is the ideal number of components for the PPCA mixture
model.

III. PROPOSED METHOD

In this section the proposed batch-incremental FDD system
is described. An important feature of the proposed FDD system
is that it gradually learns new faulty operation conditions of a
process by analysing data batches incrementally. The proposed
method begins only with the model of a normal operation
condition (NOC). The greedy algorithm described in Section
II-B is used to fit a PPCA mixture model that describes the
normal condition. Every time a new operation condition is
detected, a new mixture PPCA is estimated to model this new
condition.

Given the NOC PPCA model, process monitoring is per-
formed using the threshold derived in Section II-A, through the
Monte Carlo simulations. By monitoring the samples’ statistics
of a given data stream under the normal operation model,
deviations from the NOC can be detected, suggesting a fault
in the process.

Suppose a new data batch to be analysed, containing N
samples. Given that the threshold h of the normal operation
PPCA mixture model was obtained with a 100β% confidence
bound, it is expected that, approximately, Nf = (1 − β)N
samples to be detected outside the threshold, even though the
process is operating under normal condition. More formally,
the number of samples detected as out of control, Nf , follows
a binomial distribution, Nf ∼ B(N, 1−β), given that the data
is under NOC. Therefore, to actually detect an abnormal opera-
tion, the number of out of control samples Nf detected must be
greater than the binomial inverse cumulative distribution, also
with β level of significance, lets denote Nf > B−1

β (N, 1−β).

Before fitting a new PPCA mixture model for the detected
fault, the Nf samples are analysed based on all the others
PPCA mixture models already created (each one describing
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(a) Three-components mixture.
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(b) Five-components mixture.
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Figura 1: PPCA mixture model example.

1

Fig. 1. Example of some steps of the greedy algorithm.

one operation condition already observed) to check if the
current data is from an already known condition. Suppose that
besides the PPCA mixture model for the normal condition,
another C mixture models have already been fitted to model
C abnormal conditions. The idea is the same as used to check
if the data deviates from the NOC. Since all C of the mixture
models has its own threshold, hc, also obtained by the Monte
Carlo simulations, the same test with the binomial distribution
is made, for each mixture models.

Therefore, the Nf samples are only used to fit a new PPCA
mixture model if none of the already known behaviours can
model them well enough. Formally, if Nfc is the number of
samples in the subset which are outside the threshold hc of
the PPCA mixture model c, a new behaviour is detected if
Nfc > B−1

β (Nf , 1 − β), for all c = 1, 2, ..., C. If Nfc <=
B−1
β (Nf , 1−β) for at least one c, the detected fault is already

known, and the corresponding PPCA mixtures model is the
one with the smallest Nfc.

Given that (1 + C) PPCA mixture models already exists,
one for the NOC and C for abnormal behaviours, such that
p(t | c) for all c = 1, 2, ..., C, the method can be summarised
as follows:

1) Given a new data batch, analyse all the N samples
from the batch through the statistics p(ti | normal),
detecting Nf out of control samples, under the thresh-
old h.

2) If Nf <= B−1
β (N, 1 − β), the data batch is clas-

sified as under normal condition, and returns. Else,
abnormal condition is detected and analysed in Step
3.

3) Compute Nfc =
∑Nf

i=1 [p(ti | c) < hc] for all c =
1, 2, ..., C, that is the number of samples in Nf that
their statistics are beyond the threshold of each of the
mixture models.

4) If Nfc > B−1
β (Nf , 1 − β), for all c = 1, 2, ..., C,

a new behaviour is detected, go to Step 5. Else, an
already known behaviour is detected, classified as c =
argmincNfc.

5) Fit a new PPCA mixture model with the greedy
algorithm based on the Nf dataset, and compute its
threshold hc+1 via Monte Carlo simulations. Add
the new PPCA mixture model to the FDD system,
C = C + 1.

These steps can also be seen in the flowchart in the Figure
3.

As previously discussed, even a normal operation condition
data set will have some samples detected as abnormal, due
to the β level of confidence. To minimize false alarms during
these situations, an exponential moving average (EMA) filter is
used in the monitoring statistics, adding some time dependency
between the samples, a very reasonable assumption in the real-
time analysis. The filter is given by:

p(ti) = (1− γ)p(ti−1) + γp(ti) , (7)

where γ is the filter weight. When γ = 1, the filtering action
is disabled.



Fig. 2. Tennessee Eastman Process [27].

IV. NUMERICAL EXPERIMENTS

The proposed method was tested using a Simulink model
of the Tennessee Eastman Process (TEP) [27] under a decen-
tralised control strategy [28]. The process has five main units,
the reactor, condenser, separator, stripper and compressor, as
shown in Figure 2. The plant has eight components: A, B, C,
D, E, F, G and H. The components A, C, D and E are gaseous
reactants and B is a inert gas which are fed to the reactor,
where the liquids G and H are produced. The component F is
a subproduct of the reactions.

The process has 41 measured variables and 12 manipulated
variables. Due to a uniformity in the sample period of 6 min-
utes, only the first 22 measured variables were used, which are
summarised in the Table I. The others 19 measured variables
have different sample frequency and are measurements of the
plant components.

The simulation model has 21 operation modes, correspond-
ing to one normal operation and 20 faulty operations. The
majority of them were tested and successfully detected with
the proposed method. The faults considered are summarised
in the Table II, together with the number of samples taken
to detect the fault after it occurred and the number of mix-
ture components necessary to model its behaviour. Fault 6
presented an unstable behaviour, making it inappropriate to
work with. The unlisted faults did not present enough variation
in their distribution over the variables space while in the
stationary state when compared to the NOC. It was detected
only a quick abnormal behaviour during the transient, making
it inappropriate to fit a PPCA mixture model for these faults.

In the Figure 4, it can be seen that for at least 95% of

TABLE I. TEP’S MEASURED VARIABLES USED IN THE ANALYSIS.

Variable Description
t(1) Feed A (Stream 1)
t(2) Feed D (Stream 2)
t(3) Feed E (Stream 3)
t(4) Total Feed (Stream 4)
t(5) Recycle Flow (Stream 8)
t(6) Reactor Feed Rate (Stream 6)
t(7) Reactor Pressure
t(8) Reactor Level
t(9) Reactor Temperature
t(10) Purge Rate (Stream 9)
t(11) Product Separator Temperature
t(12) Product Separator Level
t(13) Product Separator Pressure
t(14) Product Separator Underflow (Stream 10)
t(15) Stripper Level
t(16) Strippel Pressure
t(17) Stripper Underflow (Stream 11)
t(18) Stripper Temperature
t(19) Stripper Steam Flow
t(20) Compressor Work
t(21) Reactor Cooling Water Outlet Temperature
t(22) Separator Cooling Water Outlet Temperature

variance retainment, through the analysis of the NOC dataset,
q = 14 principal components are necessary. As the NOC
in the simulation is composed by a single process operation
point, once normalised, the data scatter in the variable space is
practically Gaussian, hence, an one-component PPCA mixture
model was chosen to model the NOC.

The time signal of all the 22 measured variables for a given
dataset can be seen in Figure 5. In the beginning, under NOC,
all variables are around zero with unit variance, since they have
been normalised. The Fault 2 is applied in the sample time
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TABLE II. PROCESS FAULTS.

Fault Description Type Detection No of Mixture
ID Delay Components
1 A/C feed ratio, B composi-

tion constant (Stream 4)
Step 6 5

2 B composition, A/C ratio
constant (Strem 4)

Step 6 2

8 A, B, C feed composition
(Stream 4)

Random
variation

11 4

10 C feed temperature Random
variation

22 1

11 Reactor cooling water inlet
temperature

Random
variation

6 1

12 Condenser cooling water in-
let temperature

Random
variation

13 1

13 Reaction kinetics Slow
drift

13 4

14 Rector cooling water valve Sticking 6 1
17 Unknown Unknown 21 5
18 Unknown Unknown 41 2
19 Unknown Unknown 35 1
20 Unknown Unknown 28 2

100, causing a transitional behaviour at first, stabilising after a
while. Running this dataset through the proposed method, the
fault was correctly detected. In the Figure 6 the monitoring
statistic (already filtered, with γ = 0.9) is shown for each
sample, together with the threshold h for the normal operation
condition, where can be seen that the threshold was exceeded
6 samples after the fault occurred.

Since this fault is yet unknown, all the samples in which
its monitoring statistics is classified as abnormal are used to
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train a new PPCA mixture model, so if this fault happens
once again, the FDD system should be able to diagnose it.
The trained model for the Fault 2 has a 2-component PPCA
mixture model, chosen from the analysis shown in the Figure
7, with the same q = 14 principal components.

Supposing a situation, where a new data batch to be
analysed contains the same fault, the first analysis would show
again an abnormal behaviour, similar to the Figure 6, but
now analysing the abnormal samples with the already trained
PPCA mixture model for this fault, as shown in the Figure 8,
the analysed behaviour can be classified correctly as Fault 2,
whereas the number of samples beyond the model threshold
is less then the expected binomial distribution.

For a more complete simulation, a sequence of opera-
tion conditions, divided by data batches fed separately, was
analysed by the proposed algorithm. Such sequence follows
as described in Figure 9, where the faults 2, 11, 13 14 and
20 were chosen so it covered all fives types of faults in the
process. Each data batch begins from the NOC, represented as
the Operation ID 0, and since normally the plant does not jump
from one fault condition to another, it returns to the NOC after
the fault. Also, the chosen faults were applied twice in order to
verify the diagnostic part of the method. All the 22 measured
variables for this sequence, just for a rough visualisation of
the data, can be seen in the Figure 10.

The results are shown in the Figure 11. The dotted line
shows the same sequence of operations as in the Figure 9, for a
matter of reference. The asterisk symbol shows the time instant
where the given fault was detected and the black diamond
symbol shows the samples used to fit a new model, when an
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unknown behaviour is detected. The dashed line is the classifier
output.

It can be seen that on the first instance of the given faults,
the faulty samples are used to fit a PPCA mixture model to
describe such condition and, as it is yet unknown, there is no
output from the classifier. When an already known fault occurs,
the classifier is able to diagnose the given fault, as seen in the
last five faults of the sequence.

Furthermore, if seen closely in Figure 10, the faults 2 and
13 have a slightly longer transient. Since a PPCA mixture
model was used, these samples were also successfully mod-
elled, as shown in Figure 11, both in the abnormal samples
chosen to fit the model and the classifier output, where it
extrapolates the “step” of the fault. In conclusion, the proposed
method correctly detects a new behaviour and successfully
diagnose a fault once it is already known.

V. CONCLUSIONS

This paper proposes a batch-incremental method for pro-
cess fault detection and diagnosis (FDD). The historic data
based modelling uses mixtures of probabilistic principal com-
ponent analysis (PPCA) as the base to model the operation
conditions of the plant. The PPCA models are estimated via
a greedy algorithm that helps identify the ideal number of
mixture components necessary to model a given behaviour and
avoid convergence problems.

The use of a mixture of PPCA allows to model operation
conditions with non-gaussian data patterns in high dimensional
variable spaces, which broadens the possibilities of application.
The proposed method has shown promising results when
applied to the Tennessee Eastman Process problem, being able
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to precisely identify faults and diagnose already known faulty
conditions. Although the proposed FDD system do not have
an online learning, the monitoring of a process can be done
in real time starting only with a NOC data set, which can be
of significant help to operators and technicians work on the
process.

Future work is focused on extending the proposed method
in two ways. Firstly, a probabilistic contribution analysis [29]
can be used to isolate the variables associated to a given fault,
directing the operators to the possible physical location of
the problem, facilitating the diagnostic. Furthermore, a online
adaptive learning method for the mixtures of PPCA would
increase the automation level of the system, being able to adapt
to changes in the general behaviour of the process.
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