
Adaptive Fault Detection and Diagnosis Using

Parsimonious Gaussian Mixture Models Trained with

Distributed Computing Techniques

Thiago A. Nakamuraa,⇤, Reinaldo M. Palharesa, Walmir M. Caminhasa,
Benjamin R. Menezesa, Mário Cesar M. M. de Camposb, Ubirajara Fumegac,

André P. Lemosa

a Federal University of Minas Gerais, Department of Electronics Engineering
Av. Antônio Calos 6627 - Belo Horizonte - MG - 31270-901 - Brazil

bCENPES, PETROBRAS
Av. Horácio de Macedo, 950 Cidade Universitária, Ilha do Fundão - Rio de Janeiro - RJ -

21941-915 - Brazil
cREGAP, PETROBRAS

R. José Dias Diniz, 690 - Betim - MG - 32689-898 - Brazil

Abstract

After a great advance by the industry on processes automation, an important

challenge still remains: the automation under abnormal situations. The first

step towards solving this challenge is the Fault Detection and Diagnosis (FDD).

This work proposes a batch-incremental adaptive methodology for fault detec-

tion and diagnosis based on mixture models trained on a distributed computing

environment. The models used are from a family of Parsimonious Gaussian Mix-

ture Models (PGMM), in which the reduced number of parameters of the model

brings important advantages when there are few data available, an expected sce-

nario of faulty conditions. On the other side, a large number of di↵erent models

rises another challenge, the best model selection for a given behaviour. For that,

it is proposed to train a large number of models, using distributed computing

techniques, for only then selecting the best model. The work proposes the us-

age of the Spark framework, ideal for iterative computations. The proposed

⇤Corresponding author
Email addresses: akionakamura@ufmg.br (Thiago A. Nakamura), rpalhares@ufmg.br

(Reinaldo M. Palhares), caminhas@ufmg.br (Walmir M. Caminhas), brm@cpdee.ufmg.br
(Benjamin R. Menezes), mariocampos@petrobras.com.br (Mário Cesar M. M. de Campos),
fumega@petrobras.com.br (Ubirajara Fumega), andrepaim@ufmg.br (André P. Lemos)

Preprint submitted to Journal of The Franklin Institute December 31, 2015

methodology was validated in a simulated process, the Tennessee Eastman Pro-

cess (TEP), showing good results for both the detection and the diagnosis of

faults. Furthermore, numeric experiments show the viability of training a large

number of models for the best model selection a posteriori.

Keywords: FDD, mixture models, parsimonious Gaussian, distributed

computing

1. Introduction

In the last decades, the industrial processes control and automation has

had great advances with the usage of computers for controlling complex plants,

mainly using the so called regulatory control. Even with all that advancement,

however, an important task on the industrial plant management still remains in5

great part manual, done by human operators. That task involves all necessary

actions against a process fault, since the abnormal event detection until its

diagnosis, locating the origin of the fault and taking the proper actions in order

to return the process to a normal and safe state. All that activity is generally

called Abnormal Event Management (AEM) [1].10

The human ability to deal with this task has been getting ever more limited,

due to several reasons. Firstly, the scope of possible problems in a plant is much

too broad, and the amount of data to be monitored is way too high, possibly

thousands of features every few seconds. Furthermore, the speed to reach the

diagnosis is, oftentimes, essential for both reducing the productivity loss and15

increasing safety.

Thus, this is the next big challenge on control engineering. As the regulatory

control, automatised by computer, has spread around all industry and brought

a huge progress regarding product quality and consistency, besides safety and

e�ciency, the automation of AEM will be of great importance. The automation20

of the Fault Detection and Diagnosis (FDD) is the first step of the AEM, and

it is the main focus of this work.

First of all, it is important to define what is the task and the scope of a

2

FDD system. A fault in a process it is not necessarily a result of a catastrophic

problem in an equipment, it is not even necessary to involve a physical compo-25

nent. A fault can be, for example, a non-optimal operation of the plant or a

product o↵ its specification. The root of a problem can be diverse, e.g. sensor

calibration, poorly tuned controllers, bad quality raw material, pressure lost in

pressurised systems, or even human error. All faults generate symptoms, which

are events and/or value variations that allows for a fault to be detected and30

isolated.

To detect a fault is simply to recognise a problem has occurred, even if the

root cause is unknown. The detection is done looking for the symptoms, which

can be in a qualitative or quantitative form. To diagnose a fault is to specifically

point out what was the problem and possibly indicating possible solutions.35

Thereby, the FDD task can be directly associated with human diseases. A

disease (or a fault) can rarely be detected by the doctor (the FDD system)

without a patience with symptoms. Furthermore, a given set of symptoms can

be diagnosed if a disease which causes the observed symptoms is known.

A good FDD system, fast and e�cient, is essential of minimize the produc-40

tivity loss facing an abnormal event and guarantee the safe operation of the

plant. To observe the symptoms of a fault, it is necessary a model of the plant,

so one can see its behaviour change. Modelling methods for FDD can be gener-

ally classified as quantitive-based models, qualitative-based models e historical

data based models [1, 2, 3, 4].45

Over the years, historical data based models gained a lot of attention. One

of the reasons is that those methods do not demand a knowledge of the physics

of the process, which is oftentimes unfeasible for complex systems. They rely

only on data collected during the plant’s operation. Some examples of historical

data based methods are neuro-fuzzy [5, 6], artificial neural networks [7], imune50

systems [8, 9], statistical methods [10, 11, 12, 13] and expert systems [14].

The Multivariate Statistical Process Monitoring (MSPM) for FDD has re-

ceived considerable attention lately, both the research community and the in-

dustry [15]. The base of the MSPM is to find a statistical model for the normal

3

operation condition, followed by a monitoring statistics and its confidence mar-55

gin. Big industrial processes can have hundreds of monitored variables in real

time, which require a complex model on the FDD system. Most of the times,

several of these variables are highly correlated, which lead to a redundancy of

information and the possibility of simplifying the models. With the normal

condition operation model in hands, the detection is made monitoring the plant60

continuously, looking for a behaviour that deviates from that model, indicating

an abnormal state. The diagnosis is possible if, somehow, the abnormal event

is also modelled, making the reoccurrence of a known fault faster to be dealt

with.

There are several modelling methods which, by means of some restrictions,65

simplify the model without significant information loss, making them easier to

train and more robust. Simpler models require less training data to reach a

good parameter estimation, this is particularly important in the FDD scenario

because it is expected to have very scare data of faulty conditions. For example,

for decades, the Principal Component Analysis (PCA) for MSPM was subject70

of intense study and research [16, 17]. Over time, its linear limitation and non-

statistical formulation lead to the development of the Probabilistic Principal

Component Analysis (PPCA) [10, 18, 19]. The PPCA is part of a set of par-

simonious Gaussian models directly related to the factor analysis model [20].

Having a probabilistic model, it is possible to define a Mixture of Probabilistic75

PCA (MPPCA), which allows for a better modelling on a non-linear feature

space that many processes have [21]. Those Gaussian-like mixture models can

have several others restrictions on their covariance matrix that can be good

alternatives [22].

As important as a good modelling technique is how this model is trained80

with the available data, whether it is from a normal or a faulty condition, since

the parameters initialisation [23, 24, 25], which can lead to a quite di↵erent

final result, until a fast and e�cient training algorithm [26, 27]. Moreover,

many statistical models are defined as mixtures of a given distribution, and the

choice of the ideal number of components is still an important challenge for the85

4

research community [28, 29, 30].

Creating such complex models, with hundreds of variables, thousands of

samples and iterative training, and select the ideal model within several pos-

sible structures and restrictions, can be computationally expensive and time

consuming. Therefore, it is sought to use parallel and distributed programming90

techniques, already vastly used in the analysis of the so called big data in the

computer science community, to deal with this problem [31, 32, 33, 34].

This work is divided in five sections. Section 1 introduces the current sce-

nario for the proposal of this work, as well as presents the motivation and

objectives of its execution. A short literature review of the three main themes95

addressed in this work is present in Section 2. Section 3 shows in more detail

the statistical model used, explains the batch-incremental approach used for the

FDD task and how the models are trained using a distributed computing sys-

tem. Validation results are shown and discussed in Section 4. Finally, Section

5 concludes the work and analyse future possibilities of improvements.100

2. Literature Review

The proposed work, for better understanding, can be divided into three main

themes: the fault detection and diagnosis itself, the statistical modelling method

to be used and the implementation in a parallel and distributed programming

environment. This section presents a short review of these three themes, ad-105

dressing concepts, strategies and methodologies from the current literature.

2.1. Fault Detection and Diagnosis

A fault is not necessarily characterised by a catastrophic problem in any

part of the plant, nor even is necessary to involve a physical equipment. Ev-

ery component of the plant and the control system is a potential source of a110

fault, and the FDD system should be able to monitor and detect the problem

independently of where it occurred, as illustrated by Figure 1, even if it is not

capable of indicating the location or the cause of the fault.

In general, faults can be classified in three categories [1]:

5

Figure 1: Monitoring scheme of a FDD system.

1. Process’ gross parameter change: Not all the details of a plant are115

considered when building a model, and many external factors that were

neglected can have an influence in its behaviour. These factors are com-

monly called exogenous variables. Some examples of this type of distur-

bances can be a change of a reagent concentration, or heat exchange ratio

of a heat exchanger.120

2. Structural change: A structural change is characterised by a fault in

an equipment, resulting in a change in the information flow between the

variables. Examples of this class of faults are problems in the controller

or a leakage in a pipe.

3. Sensors and actuators malfunction: Although a sensor or actuator125

malfunction does not represent a process failure per se, it directly a↵ects

its behaviour by compromising the entire control system. A valve gripe is

an example of this fault.

Independently of the fault class, it usually is characterised by a change in

the distribution of the involved variables. When dealing with a dynamic envi-130

ronment, like most of the real life problems, the learning algorithms must be

able to detect or adapt to those changes, usually called concept drifts [35]. In

6

the FDD context, those changes can represent two scenarios: a change, usually

gradual, of the normal operation condition, in which the model should adapt; or

the occurrence of a fault, where it should be detected and diagnosed (or learnt,135

if it is new).

Figure 2: Concept drift types.

The Figure 2 illustrates the di↵erent ways a concept drift can occur and

the diference between a concept drift and an outlier. For example, equipment

breakage will have an abrupt change in its behaviour. A natural wear has an

incremental change, and here it should be decided whether to gradually adapt140

the model or in fact detect the fault. A fault can also be gradual, possibly caused

by bad contact, for example. A valve gripe that does not happen all the time

and loosens itself after it occurred can be characterised as recurrent. In the last

case, the outlier happens due to some noise or temporary disturbance, and does

not represent a concept drift, and this di↵erentiation is one of the challenges of145

the field.

2.1.1. Desired Characteristic of a FDD System

A good FDD system should have some important characteristics, as ex-

plained as follows. Hardly one system will comply with all those characteristics

in the best possible way, since many of them present a trade-o↵ between each150

other. So this set of characteristics are important to enable comparison between

di↵erent methodologies, presenting a concrete choice of a system given a certain

scenario [1].

7

Fast Detection and Diagnosis. A faulty condition on a process should, ideally,

be detected and diagnosed as fast as possible. However, a system which responds155

quickly to changes is more sensible to high frequency influencies, like noise and

outliers, which can lead to a high rate of false alarms.

Isolability. Isolability is the FDD system’s ability to distinguish between di↵er-

ent failures. Although this characteristic is directly linked with the monitored

system, it is sensible to the ability to reject uncertainties of the model. In160

other words, the ability to identify di↵erent faults trades o↵ with the ability of

generalize the uncertain behaviour of a given fault.

Robustness. The robustness of a system is characterised by its ability to deal

with noise and uncertainties and still deliver a good perfomance. The way the

system degrades is also important, the system is more robust if its performance165

degrades slowly, instead of abruptly.

Novelty Identification. In general, there are a lot of data and information about

the normal operation condition of a plant, but the same is not true for abnormal

conditions. It is probable that a given problem has never even been seen in

practice. A FDD system should be, minimally, able to di↵erentiate a normal170

from an abnormal condition and, detected the abnormality, di↵erentiate between

a known fault or a new one. The lack of data and information about faulty

behaviour is an important limiting factor for the novelty identification.

Classification Error Estimate. In practice, it can be important for the user to

have a confidence value for the system’s diagnosis. That way, the operator175

can take a safer and better decision, choosing to follow or not the system’s

recommendation.

Adaptability. It is expected that the behaviour of a process to change with time,

be it due to natural wear or external factor, like the season. The FDD system

should be able to adapt to these changes as those new information is received.180

8

Explanation. Besides identifying a problem, it would be good if the system could

indicate the location of the fault and explain how it began and spread through

the plant. It is desirable that the system could justify why it chose a given

hypothesis for the origin of the problem and rejected the others. This is specially

important when the system has a central role in real time decision making,185

recommending possible actions by the plant operator, which will evaluate the

situation with his expertise and experience.

Modelling Requirement. The necessary e↵ort to build the model to be used by

the FDD should be as small as possible. Here, it is taken into consideration the

necessary knowledge about the plant, people involved, amount of data, etc.190

Computation and Data Storage Requirement. A very complex system can re-

quire great computation power and data storage. Although this cost is dwin-

dling, it is still an important factor and should be taken into consideration.

Multiple Fault Idetification. This is a hard task, di↵erentiate two di↵erent faults

that happen at the same time might be impossible due to the way the variables195

are naturally linked in the process. Even if it was possible to isolate the be-

haviours, this combinatory analysis of the possibilities can be prohibitive for big

processes.

2.1.2. FDD Methods and Models

A FDD system can be developed under the perspective of several meth-200

ods, usually separated into: quantitative methods, qualitative methods and

historical-data based methods. There are still hybrid methods that aims to

mix the advantages of each one. But independently of the method, in general,

the diagnosis process can be understood as a series of transformations ou map-

ping of the process’ measurements, based on the a priori knowledge and search205

techniques, as shown in Figure 3 [1].

The Measurement Space does not require any a priori knowledge and it is the

input of the diagnose system, it is simply the measurements of the plant. The

9

Figure 3: Transformation stack for diagnosis [1].

Feature Space comes the applying some function over the Measurement Space

based on a a priori knowledge, the measurements are analysed and combined to210

generate some useful information about the process’ behaviour. The Decision

Space is usually achieved via an objective function, like error minimisation or

simply a limiar function. Finally, the Class Space is the set of possible faults

where the given problem is classified and diagnosed.

Figure 4: Modelling techniques tree for FDD systems [1].

Figure 4 shows some examples of methods which can be used in the FDD215

10

system. The main focus of this work are methods based on historical data,

and some of them will be briefly discussed next. In particular, it was used

the statistical classifier, where the base model is described in Section 2.2.7. A

general study of other methods can be seen in [1, 2, 3, 4].

2.2. Modelling220

Modelling methods for FDD can be, in general, classified in quantitative

based models, qualitative based models and historical data based models, as

shown in Figure 4. The first two techniques usually require a considerable a

priori knowledge of the plant, which can, many times, make its usage more

di�cult.225

On the other hand, historical data based models rely only on a big amount

of data of the working plant, not needing a profound knowledge of the physics

of the process. Thereby, and also because of the fast development of machine

learning algorithms and computing power and storage, those methods purely

based in data are gaining a lot of space in the industry. In this section, a brief230

review of some of these methods is presented, finalising with a more detailed

approach of the statistical methods, which are used in this work.

In the branch of historical data based models, there are di↵erent approaches

on how each method transforms the data into information for the diagnosis

system. That is also known as characteristic extraction, and can be classified235

as qualitative or quantitative [3], as also shown in Figure 4.

Two of the mains methods of qualitative characteristic extraction are expert

systems and trend analysis. About the quantitative methods, they can still

be sub categorised as statistical and non-statistical. Among those, the PCA

and the statistical classifiers are most well known, whilst a the artificial neural240

network is much used non-statistical method.

2.2.1. Expert Systems

Expert systems are based on rules relating characteristics or behaviours of

the process, many times being simply if-then-else or fuzzy rules. An expert sys-

11

tem is usually specifically designed for a given process and solves problems for a245

limited domain. The main advantages of an expert system is the ease in devel-

oping, the interpretability of the diagnostic, ability to work under uncertainties,

to provide an explanation about the diagnostic and to suggest possible solutions

for a fault. The big disadvantage is that the rules are always very specific for

the process to which it was designed, besides having a limited representation250

power.

2.2.2. Trend Analysis

Another important qualitative form of characteristic extraction is the ab-

straction of the information in the trend of the signals, very used in process

monitoring. The QTA aims to model the trend of the collected signals, trying255

to identify and explain important events that occur in the process, diagnosing

the problem or even trying to predict future states.

The qualitative trend representation of the plant allows better comprehen-

sion of its behaviour. In the majority of the cases, process malfunctioning

present a di↵erent trend in the sensor signals. Those trends can be used to260

identify possible abnormalities, allowing fault detection and classification [3, 36].

2.2.3. Artificial Neural Network

The quantitative characteristic extraction approach for FDD formulates the

diagnosis task as a pattern recognition task. In other words, it aims to classify

the samples into classes, in general, pre determined.265

Statistical and non-statistical methods can be found inside the quantitative

approach set. The Artificial Neural Network is the non-statistical method most

commonly used, where several architectures, activation functions and learning

strategies can be found. The networks with supervised learning are usually

trained with the Back Propagation algorithm, and unsupervised learning net-270

works follow the ideia of the Kohonen networks, also known as Self Organising

Maps (SOM) [3, 7].

12

2.2.4. Statistical Models

Finally, the historical-data based models with quantitative characteristics

extraction methods can have a statistical approach. The most basic technique275

is to estimate the parameters of a probability distribution function to model

the normal operation condition of the plant and, from that model, monitor

its behaviour. New samples can be classified as faulty in case they do not

belongs to the normal model, within a given threshold and confidence level

[3, 10, 11, 12, 13].280

Multivariate statistical techniques, like the Principal Component Analysis

(PCA), allows compression and dimensionality reduction without substantial

information loss. Furthermore, statistical classifiers, like the Gaussian mix-

tures, can be directly used as a diagnosis system. Next, a little more detailed

explanation about the PCA is given, as well as its relation with the Probabilistic285

Principal Component Analysis (PPCA) and, in its turn, how the PPCA can be

generalised into a broader family of parsimonious Gaussian models.

2.2.5. Principal Component Analysis

The classic PCA is a technique highly spread and used for dimensionality

reduction. From a practical point of view, it has two basic definitions that leads290

to the same formulation [37]. For a given observed data vector of dimension d,

t(d)
1, the definitions are:

• Projection of the data into orthogonal axis of a sub-space which retains

the maximal variance.

– The projection of the space Rd into the space Rq, q < d, where295

x(q) = WT
(d⇥q)(t(d) �¯

t(d)) retains the maximal variance.

• Projection of the data into orthogonal axis of a sub-space which optimizes

the linear reconstruction of the data.

1just during this demonstration, the subscript indicates the vectors and matrixes dimen-

sions for ease of understanding

13

– Reconstruction of ˆt(d) from the scores x(q), where ˆt(d) = W(d⇥q)x(q)+

¯

t(d) has the smallest reconstruction quadratic error
PN

i=0 kti(d) �ˆ

ti(d)k2,300

where N is the number of training samples.

Both definition lead to the same principal sub-space defined by W(d⇥q),

whereW(d⇥q) is formed by the q eigenvectors associated with the q highest eigen-

values of the sample covariance matrix S(d⇥d) =
PN

i=1 (t(d) �¯

t(d))(t(d) �¯

t(d))
T /N .

The value q is called number of principal components and is set accordingly305

to the necessary specification of variance retention. Usually the retained vari-

ance is set to be 95%, determined by the eigenvalues of S(d⇥d) [38].

With the PCA model computed, the real-time monitoring for detecting dis-

sonant behaviours is done with two statistics:

• The Hotelling’s T 2, using the q vector of loading selected during modelling,310

indicating how the data befits the model [39].

• The statistic Q measures random variations in the data, based on the

quadratic prediction error, like measurement noise [16].

Both statistics, T 2 and Q, work with confidence levels and thresholds, and

detect failures of di↵erent natures, but should be used together. There is not a315

standard method for a combined analysis of them and the linear limitation of

the data projections hardens the modelling of non-linear problems, as most of

the industrial processes are.

2.2.6. Probabilistic Principal Component Analysis

Even though the use of PCA is highly spread, the usage of a probabilistic320

approach of the problem brings important advantages [18]:

• Allows easy comparison with di↵erent models and other techniques based

on probabilistic models;

• The value of the probability density function allows to measure the degree

of novelty of a given data regarding the model;325

14

• One single statistic to be monitored;

• Allows to work with missing data (the basis for the variable contribution

analysis of a fault);

• It can be easily extended to a mixture of local models.

The Probabilistic Principal Component Analysis (PPCA) is a particular case

of the Factor Analysis model, which in turn is a particular case of the Latent

Variable model [18]. The Latent Variable model aims to relate observable data

t(d) 2 Rd to a vector of latent variables x(q) 2 Rq, where usually q < d, such

that:

t(d) = f(x(q) | w) + ✏ (1)

where f(· | ·) is any function of the latent variables, x(q), given the parameters330

w and an independent noise ✏. Defining a probability density function for x(q)

and ✏ it is possible to, from the collected data, estimate the model parameters,

✏, via maximum likelihood.

The Factor Analysis model is a very common Latent Variable model, where

the function f(x(q) | w) is assumed to be a linear function, of the form:335

t(d) = W(d⇥q)x(q) + µ+ ✏ (2)

One can already notice the similarity with the classic PCA model, be-

ing it a linear transformation of the data. As in the PCA model, it is also

assumed that the latent variables are uncorrelated and with unity variance

x(q) ⇠ N (0, I(q)). The noise is assumed as having zero-mean and being un-

correlated, ✏ ⇠ N (0, (d)), where (d) is diagonal.340

Finally, the Probabilistic PCA is the previous Factor Analysis model with

the restriction that the noise is isotropic, ✏ ⇠ N (0,�2I(d)). Hence, given the

latent variables x(q) the conditional distribution of t(d) is:

p(t(d) | x(q)) = (2⇡�2)�d/2e�
1

2�2 kt(d)�W(d⇥q)x(q)�µ(d)k (3)

15

Since it was assumed that x(q) ⇠ N (0, Iq), it is possible to obtain that the

marginal probability distribution of t(d) is a multivariate normal distribution345

given by t(d) ⇠ N (µ,C), where C = �2I(d) +W(d⇥q)W
T
(d⇥q), such that:

p(t(d)) = (2⇡)�
d
2 |C|� 1

2 e�
1
2 (t(d)�µ)TC�1(t(d)�µ) (4)

Comparing with the multivariate normal distribution where the sample co-

variance matrix, S(d⇥d) should be estimated, the covariance matrix of the PPCA

model, C, depends only on �2 and W(d⇥q). Therefore, the PPCA can be un-

derstood as a way to reduce the complexity of the model by selecting only the350

principal components, q < d. In another words, the number of free parame-

ters in C, [dq + 1� q(q � 1)/2], of order O(dq), is smaller than the [d(d+ 1)/2],

which is O(d2), parameters of S(d⇥d), if q < d.

Finally, with N observed samples of t(d), it is possible to estimate the pa-

rameters Ŵ(d⇥q), µ̂ and �̂2 that define the distribution via statistical methods,355

e.g., the Maximum Likelihood Estimation (MLE).

Mixtures of PPCA. With a probabilistic model at hand, it is possible to define

a mixture of those models. The PPCA mixture model with k components is

defined as [19]:

p(t) =
kX

i=1

⇡ip(t|i) , (5)

where p(t|i) ⇠ N (µi, Ci) is the distribution of the ith component, in which360

Ci = WiW
T
i + �2

i I, and the weights sum to unity,
P

i ⇡i = 1. Thereby, each of

the k components can be understood as a local model, that combined represent

the entire set of data. Even though there is no closed-form formula to estimate

the parameters of the mixture, the MLE can be achieved iteratively with the

Expectation Maximisation (EM) algorithm.365

2.2.7. Parsimonious Gaussian Mixture Models

Taking as a base the previously discussed Factor Analysis model, described

by Equation 2, and again assuming independent factors and unit variance, x ⇠

16

N (0, I), and a noise with zero mean and uncorrelated, ✏ ⇠ N (0,), where

is diagonal, the model has a marginal distribution, similar to the PPCA, given370

by:

p(t) = N (µ,WWT +) (6)

Thereby, one can see that the Factor Analysis model is nothing more than a

multivariate Gaussian with restrictions on the covariance matrix. Hence, it can

be assumed that mixture of Factor Analysis model has the same formulation as

the one described in Equation 5.375

With the Factor Analysis mixture model, a family of distributions called

Parsimonious Gaussian Mixture Models (PGMM) was developed [20]. Each

member of this family applies a set of restrictions on the possible variations of

the parameters among its mixture components. In other words, given a mixture

with k components, three restrictions can be applied:380

1. All the mixture components have the same loading matrix, Wi = W ,

8i = 1, 2, ..., k;

2. All the mixture components have the same noise variance, i = , 8i =

1, 2, ..., k;

3. The noise of each component is assumed to be isotropic, i = �2
i I.385

Therefore, having three independent restrictions, the PGMM family has

eight members, covering all the possible restriction combinations. As shown

on subsection 2.2.6, the PPCA is derived from the Factor Analysis model as-

suming a isotropic error, = �2I, which is exactly the third restriction of the

PGMM described above. So, the seventh row in the Table 1, the member UUC390

is equivalent to the MPPCA. This relation is illustrated in Figure 5, as well as

its relation with the classical PCA.

As discussed on subsection 2.2.6, the PPCA have less parameters to be

estimated than a regular Gaussian. The restriction of the PGMM can reduce

even more the number of model parameters, as summarised in Table 1. The395

least restrictive models (UXX) have a number of parameters of order O(kpd),

17

Figure 5: From the PCA to the PGMM family of distributions.

which is already smaller than a regular Gaussian mixture model, with O(kd2).

The most restrictive models (CXX), have a number of parameters of order O(pd).

This complexity reduction of the models can be crucial on training with scarce

data. In the context of FDD, this is important when modelling faulty conditions,400

where it is expected to have few available data.

Table 1: Covariance structures of the members of the PGMM family.

ID Wi = W i = i = �2
i I Covariance Parameters

CCC Constrained Constrained Constrained [pq � q(q � 1)/2] + 1

CCU Constrained Constrained Unconstrained [pq � q(q � 1)/2] + p

CUC Constrained Unconstrained Constrained [pq � q(q � 1)/2] + k

CUU Constrained Unconstrained Unconstrained [pq � q(q � 1)/2] + kp

UCC Unconstrained Constrained Constrained k[pq � q(q � 1)/2] + 1

UCU Unconstrained Constrained Unconstrained k[pq � q(q � 1)/2] + p

UUC Unconstrained Unconstrained Constrained k[pq � q(q � 1)/2] + k

UUU Unconstrained Unconstrained Unconstrained k[pq � q(q � 1)/2] + kp

2.2.8. Dynamic Principal Component Analysis

Directly applying the PCA technique on a matrix with the process data

is equivalent to create its static model. However, most of the processes and

industrial equipment are dynamic by nature, having a more complex relation405

between the variables than a simple static model is capable of representing. To

workaround this limitation, the Dynamic PCA (DPCA) was proposed, where

the model is not only obtained with each instant sample, but also with the

previous values [40, 41, 42].

To capture all the first order dynamic relation, one can simply consider a410

unity delay of the sample. In general, the new data matrix used for training the

18

model will have the following shape:

2

6666664

t

T
(d)(j) t

T
(d)(j � 1) · · · t

T
(d)(j � l)

t

T
(d)(j + 1) t

T
(d)(j) · · · t

T
(d)(j + 1� l)

...
...

...
...

t

T
(d)(j +N � 1) t

T
(d)(j +N) · · · t

T
(d)(j +N � 1� l)

3

7777775
(7)

where t(d)(j) is the vector of dimension d of the process data on time j, N is the

number of available samples and l is the number of delayed samples considered

to construct the new matrix to build the DPCA model.415

Note that the number of variables increases linearly with l and, in general,

l = 1 or l = 2 is enough to model the dynamics of first and second order of the

process [43]. A deeper analysis of the variables correlation can be done, in order

to find better values of delayed data to use, for example using the correlation

of the residues of an ARMA model. Possible sazonal or cyclic dynamics can be420

an interesting point of analysis. This idea can also be extended to model the

process using the PGMM, such that the mixture model will model, together

with the static part, the dynamics of the plant.

2.3. Parallel and Distributed Computing

In this section, some parallel and distributed computing concepts are revised,425

as well as some basic architectures. In the end, the Hadoop [44, 45] and the

Spark [33, 34], two of the currently most used distributed computing frameworks

are presented.

2.3.1. Basic Concepts

Parallel computing is the usage of parallel processing to reduce the time430

taken to execute a single computational problem. The evolution of the parallel

computing has gone through several stages, starting with the period which ended

in the mid-80’s, on the bit-level parallelism, with the evolution of the 4-bit

microprocessor to 8-bits, 16-bits until the 32-bits. The increasing number of

bits reduces the number of cycles needed to complete 32-bits operations. Today,435

19

there are architectures with 64-bits and even 128-bits, but the evolution in this

point forward aims mainly in better representation for floating point and larger

address space [46].

From the mid-80’s until the mid-90’s, instruction parallelism has evolved in

the microprocessors, both with the usage of the pipelines and the superscalars440

[46]. Here began the real parallel computation, with di↵erent instructions being

executed at the same time.

Even though a power limit has been reached frequency-wise, following Moore’s

Law, the processor density has increased in the sense of having multiple pro-

cessing cores in the same chip, multiplying the processing power but keeping445

the low consumption, due to the low frequency. Moreover, computer cluster

techniques, for the execution of more intense tasks, were developed, represent-

ing the beginning of the last stage of the parallel computing evolution. Now,

entirely di↵erent computations are executed at the same time over the same or

di↵erent set of data [46].450

In general, the parallelism can the achieved in two ways. Firstly, by a cen-

tralised multiprocessor, or SMP, which is a highly integrated system where all

CPUs share the same global memory. This memory supports communication

and synchronisation between processors. Secondly, by multi-computer systems,

or computer clusters, which are multiple computers connected through a net-455

work, where they interact via messages [46, 47]. This work, and this brief

revision, focus in the last one.

The Flynn Taxonomy, represented in the Figure 6, is the most used classi-

fication scheme for parallel computing in respect to the way the parallelism is

presented in the instruction and data flow. A hardware can support a single or460

multiple instruction flows handling a single or multiple data flows [48].

The SISD class refers to computers with a single instruction flow and single

data flow, commonly seen in uni-processed machines. A processor vector with

a single pipeline of control unit able to compute the same operation in several

di↵erent data sets are classified as SIMD, since they have a single instruction465

flow but multiple data flow. Machines of the MISD type are rare, and usually

20

Figure 6: Flynn taxonomy.

have an architecture with multiple function units that compute di↵erent opera-

tions over the same data at the same time. Finally, the computers categorised

as MIMD have multiple instruction and data flow. The majority of the com-

puter architectures nowadays fit into this class, since multicore computers and470

computer clusters execute, at the same time, di↵erent instruction flows over

di↵erent data flows [47, 48].

The Flynn categories indicates how the hardware handles the parallelism.

But it is also important to understand how a task, i.e., part of a code or software,

can be parallelised. There are basically two forms of parallelism: the data475

parallelism and the functional parallelism. The data parallelism happens when

independent tasks apply the same operation in di↵erent elements of the data

set, like in the following pseudo code:

i n t i ;

f o r (i = 0 ; i < 100 ; i++)480

a [i] = b [i] + c [i] ;

The sum of the hundred elements of b and c is done iteratively and allocated

to the vetor a. Accordingly with the data parallelism, all those operations could

be executed at the same time.

The functional parallelism can be achieved with tasks that operates over485

di↵erent data sets or where the result of one does not influence to other, as

exemplified in the pseudo-code:

21

a = foo (x) ;

b = bar (x) ;

c = a⇤b ;490

d = baz (y) ;

In this example, the functions foo(), bar() and baz() can be executed in

parallel, since there is no dependency among them. Oftentimes, when writing a

code optimised for parallelism, it is necessary to find along the algorithm where

the possible places for data and functional parallelism are. The elaboration of495

a Data Dependency Graph can be helpful in that task [47]. Multiple computers

can be connected in di↵erent ways through a computer network. This network

is used for messages exchange among di↵erent processing units, in order to keep

the necessary synchronicity during the parallel task.

2.3.2. Beowulf Architecture500

In 1994, Thomas Sterling and Don Becker created the first computer cluster

made entirely with o↵ the shelf components and open source software. They

showed that it was possible to build computer clusters in a way that was a lot

cheaper than the supercomputers at the time, which were specifically designed

for complex systems and parallel tasks, and still achieve a good performance.505

The Beowulf paradigm rapidly dominated the scientific community and be-

came the standard for parallel and distributed computing. However, it is impor-

tant to notice that even though the cluster is built with o↵ the shelf machines,

openly found in the market, a computer cluster di↵ers from working stations

connected through a network.510

A network of work stations is a collection of disperse computers, typically

located at the user’s desk. They are usually connected through a Ethernet

network and, although they can be used for distributed computing, their main

role is to serve the needs of its local user. In general, each machine can have its

own operating system and user softwares.515

In a computer cluster, the machines are usually located in a single location,

usually accessible via network only (without monitors or keyboards, for exam-

22

ple). Oftentimes those machines are not even accessible for log-in, being used

only as slaves in a distributed task. The entire cluster is managed as an entity,

not separate machines (although individual faults are possible and expected).520

One last important di↵erence is that computer cluster have switched network,

which is faster and with lower latency, as opposed to the shared network of a

conventional computer network [47].

2.3.3. Cluster Based Computing

Nowadays the parallel and distributed computing is well spread and con-525

solidated. Maybe the first big platform for distributed computing development

was the Apache Hadoop and the programming model of the MapReduce, based

on the system internally developed at Google [44]. Recently, other more mod-

ern approaches like the Apache Spark has been gaining a lot of space. In the

following sections, both platforms are presented.530

Hadoop and the MapReduce. The Apache Hadoop is an open source software

platform for distributed storage and processing of large data sets in computer

clusters built from o↵ the shelf hardware. All the modules of the Hadoop were

designed with a fundamental assumption that individual machines failures are

common and the system should be able to automatically deal with them, guar-535

anteeing it regular behaviour and without data loss [44].

The Hadoop can be divided in two cores: the storage, with the Hadoop File

System (HDFS) [44, 45], and the processing core, with the MapReduce [49]. The

HDFS divides the files in chunks and distribute them in the cluster nodes, with

replicas to guarantee availability and consistency. One master node keeps all540

the meta-data registered, with information of where the chunks are distributed

within the cluster. Copies of the master node state are also replicated among

several machines, allowing for recovery in case of fault.

To process the data, taking advantage of the data locality, each node process

the chunk of data present in its disk, following the MapReduce paradigm. In545

this programming model, each task has two phases, a Map and a Reduce. The

23

Figure 7: MapReduce programming model (image taken from Yahoo!’s Hadoop tutorial:

https://developer.yahoo.com/hadoop/tutorial/module4.html)

Map operation receives a key-pair value as an input and produces another key-

value pair, resulted from a filtering or sorting operation, for example, as an

intermediate step. The Reduce operation receives those intermediate key-value

pairs and summarise the final results over each key [49]. The Figure 7 shows550

the algorithm as a whole. It is important to notice that the system does not

keep the data (input, intermediate nor final) in cache. That happens because in

the Hadoop’s initial design, it was observed that the majority of the tasks the

developers aimed to solve, only one passage over the data was necessary, not

needing to keep the data in memory [44].555

As shown in Figure 7, between the Map and Reduce operation, there may

be a Shu✏e operation, where the intermediate key-value pairs are transmitted

between nodes to optimise Reduce tasks accordingly to the each key. This stage

can have a significant network overhead.

Several machine learning algorithms can be adapted to use the Hadoop560

framework, following the MapReduce paradigm during training [50, 51]. How-

ever, machine learning algorithms are in their majority iterative, and the Hadoop’s

non-caching behaviour may lead to a slow performance due to several disk ac-

24

cesses. The Spark came to, among other things, solve this problem.

Spark. The Spark, originally developed in the Berkley University California565

AMPLamp laboratory, is also a platform for distributed data storage and pro-

cessing. Besides guaranteeing fault tolerance, during Spark’s development, two

main objectives were pursued di↵erently from Hadoop: e�ciency in iterative

algorithms and interactive tools for exploratory data analysis [33, 34].

The fundamental data abstraction in Spark is the Resilient Distributed Data570

(RDD), a logical collection of partitioned data less restrictive than the MapRe-

duce model. A RDD can be create referring to external data or by applying a

transformation from another RDD. Users can control an RDD in two aspects:

persistency (to store in memory, disk or both and its replication level) and par-

titioning (number of partitions, also called as level of parallelism). An RDD can575

be allocated in memory, making its reuse by an iterative algorithm faster [34].

Besides its own cluster manager, the Spark provides support for another

systems like Hadoop YARN and Apache Mesos. In relation to the file systems,

several systems can be used with Spark, including HDFS, Cassandra, OpenStack

Swift and Amazon S3. Finally, the Spark provides support to local execution,580

e.i., in a pseudo-distributed way, important mainly for testing and developments

stages, without the need of a real cluster [34].

3. Methodology

This section describes the proposed adaptive Fault Detection and Diagnosis

(FDD) system. The proposed methodology deals with the FDD task as a pattern585

recognition problem. The patterns to be classified are defined by the plant or

equipment’s sensors and actuators signals. Each operation condition (normal or

faulty) is defined as a class. For each new data sample, it is up to the classifier

to estimate the state of the process.

The classifier is incremental, i.e., it is initialised only with the data describing590

the normal operation condition of the process/equipment. As new operation

conditions are detected, those behaviours are modelled and incorporated on

25

the knowledge base of the classifier. In this way, in case a given operation

condition happens more than once, the classifier is able to identify it, i.e., the

make an adaptive diagnosis. Although the monitoring statistics of the process595

can be computed and monitored in real-time sample-by-sample, the actual FDD

is made batch-wise, since a window of data is needed to work with the threshold

and confidence level based detection and diagnosis as well as for gathering data

for training a newly found behaviour.

As previously discussed in the Subsection 2.2.7, the PGMM family gives a600

big variety of possible structures. To find the best one to model a given dataset,

it is proposed to use a distributed computing technique, particularly the Spark

framework, to train a large number of possibilities and later choose the best

fitted model, in a tradeo↵ with its complexity.

3.1. Modelling605

The proposed FDD system has the PGMM family of distributions as its

statistical classifier model, as described in Subsection 2.2.7. The advantage of

those models is that they have parametric restrictions that limits the number

of parameters to be estimated, generating simpler models.

In general, simpler models need less data during its training process to610

achieve a good final parameter estimation. This characteristic is important

for FDD systems because, in practice, data for abnormal conditions are scarce,

since those events are, ideally, rare and of short duration.

3.1.1. Training the PGMM

The EM algorithm is an iterative method to estimate the models parameters615

that maximise the likelihood of the observed data, assuming the existence of non-

observable latent variables. The algorithm iterates through two steps: in the

first step, Expectation (E), the formula for the expected log-likelihood of the data

evaluated with the current estimation of the parameters is calculated; on the

second step, Maximisation (M), we compute the parameters which maximise the620

26

expected log-likelihood formulated on step E. These parameters are used again

on the next step E and the algorithm continues to iterate until convergence.

The models of the PGMM family are training using the Alternating Ex-

pectation Conditional Maximisation (AECM) algorithm [52], an extension of

the EM algorithm, where two di↵erent definitions of the latent variables are625

assumed on the di↵erent stages. Each of the eight models have slightly di↵erent

equations on each step, and their description and formulation can be found on

[20]. The implementation of the PGMM was in Python, based on the Machine

Learning library Scikit-learn [53], where the regular Gaussian mixtures model

was taken as a base model, changing the necessary distribution structures and630

the AECM algorithm. The computation was distributed using the PySpark, the

Spark library in Python.

3.1.2. Model Selection

Having several trained models at hand, one should finally choose which of

them is the model that best fits the observed data. As discussed earlier, the635

reduced number of parameters is an important advantage of the parsimonious

models, therefore, the metrics to judge the best model should take into account

both model complexity and fitness to the data.

The Bayesian Information Criterion (BIC) is a vastly used metric for model

selection. It is defined by[20]:640

BIC = 2 log (p(t|✓̂))�m log n (8)

where log (p(t|✓̂)) is the log-likelihood of the data given the model, ✓̂ the esti-

mated parameters of the model, m is the number of parameters and n is the

number of training samples. The BIC can be used to choose not only which

of the eight structures of the PGMM is the best, but also the ideal number of

principal components, q, and the number of mixture components, k.645

27

3.1.3. Monitoring Statistics and its Threshold

The likelihood gives the measurement of how well a data sample fits a given

probability distribution. It is this likelihood metric that is going to be used to

monitor the condition of the plant, and it can be calculated by:

p(t) =
kX

i=1

⇡ip(t|i) , (9)

where p(t|i) ⇠ N (µi, Ci) is the distribution of the i-th component, where Ci =650

WiW
T
i + i, and the weights sum to the unity,

P
i ⇡i = 1.

A threshold can be used with the PGMM to determine if a sample belongs

or not to a given model, with a certain level of confidence. For example, it can

be used a numeric approach as the Monte Carlo simulations, as follows [54]:

1. Generate Ns samples, {tj | j = 1, ..., Ns}, from p(t) given by Eq. 9.655

2. Compute the likelihood of those samples as p(tj).

3. Sort p(tj) of all the j = 1, ..., Ns samples.

4. The confidence bound is given by h = p(tl), where l = �Ns.

Hence, a given data point ti is considered out of control, with �-level of

significance, if p(ti) < h, or equivalently, if �p(ti) > �h. Typically, the number660

of Monte Carlo samples, Ns, has to be large, and can be determined heuristically.

If the training dataset used to fit the model is large enough, the confidence bound

can be calculated based on those values.

3.2. Adaptive Fault Detection and Diagnosis

In this section the proposed batch-incremental FDD system is described. An665

important feature of the proposed FDD system is that it gradually learns new

faulty operation conditions of a process by analysing data batches incremen-

tally. The proposed method begins only with the model of a normal operation

condition (NOC). The algorithm described in Section 3.1.1 is used to fit the

family PGMM and the best is selected using the criteria discussed in Section670

3.1.2, describing the normal condition. Every time a new operation condition is

detected, a new PGMM is estimated to model this new condition.

28

Given the NOC PGMM model, process monitoring is performed using the

threshold derived in Section 3.1.3. By monitoring the samples’ statistics of a

given data stream under the normal operation model, deviations from the NOC675

can be detected, suggesting a fault in the process.

Suppose a new data batch to be analysed, containing N samples. Given

that the threshold h of the normal operation PGMM model was obtained with

a 100�% confidence bound, it is expected that, approximately, Nf = (1� �)N

samples to be detected outside the threshold, even though the process is operat-680

ing under normal condition. More formally, the number of samples detected as

out of control, Nf , follows a binomial distribution, Nf ⇠ B(N, 1��), given that

the data is under NOC. Therefore, to actually detect an abnormal operation,

the number of out of control samples Nf detected must be greater than the

binomial inverse cumulative distribution, also with � level of significance, lets685

denote Nf > B�1
� (N, 1� �).

Before fitting a new PGMM model for the detected fault, the Nf samples

are analysed based on all the others PGMM models already created (each one

describing one operation condition already observed) to check if the current data

is from an already known condition. Suppose that besides the PGMM model690

for the normal condition, another C mixture models have already been fitted

to model C abnormal conditions. The idea is the same as used to check if the

data deviates from the NOC. Since all C of the mixture models has its own

threshold, hc, the same test with the binomial distribution is made, for each

mixture model.695

Therefore, the Nf samples are only used to fit a new PGMM model if none

of the already known behaviours can model them well enough. Formally, if Nfc

is the number of samples in the subset which are outside the threshold hc of

the PGMM model c, a new behaviour is detected if Nfc > B�1
� (Nf , 1� �), for

all c = 1, 2, ..., C. If Nfc <= B�1
� (Nf , 1 � �) for at least one c, the detected700

fault is already known, and the corresponding PGMM model is the one with

the smallest Nfc.

Given that (1 + C) PGMM models already exists, one for the NOC and C

29

for abnormal behaviours, such that p(t | c) for all c = 1, 2, ..., C, the method

can be summarised as follows:705

1. Given a new data batch, analyse all the N samples from the batch through

the statistics p(ti | normal), detecting Nf out of control samples, under

the threshold h.

2. If Nf <= B�1
� (N, 1 � �), the data batch is classified as under normal

condition, and the algorithm returns. Else, abnormal condition is detected710

and analysed in Step 3.

3. Compute Nfc =
PNf

i=1 [p(ti | c) < hc] for all c = 1, 2, ..., C, that is the

number of samples in Nf that their statistics are beyond the threshold of

each of the known mixture models.

4. If Nfc > B�1
� (Nf , 1��), for all c = 1, 2, ..., C, a new behaviour is detected,715

go to Step 5. Else, an already known behaviour is detected, classified as

c = argminc Nfc.

5. Fit a new PGMM model based on the Nf dataset, and compute its thresh-

old hc+1 via Monte Carlo simulations. Add the new PGMM model to the

FDD system, C = C + 1.720

These steps can also be seen in the flowchart in the Figure 8.

As previously discussed, even a normal operation condition data set will

have some samples detected as abnormal, due to the � level of confidence. To

minimize false alarms during these situations, an exponential moving average

(EMA) filter is used in the monitoring statistics, adding some time dependency725

between the samples, a very reasonable assumption in the real-time analysis.

The filter is given by:

p(ti) = (1� �)p(ti�1) + �p(ti) , (10)

where � is the filter weight. When � = 1, the filtering action is disabled.

3.3. Distributed Training

The training of the large range of possible models, where one would have to730

choose among di↵erent structures, number of principal components and num-

30

Figure 8: Flowchart of the proposed FDD methodology [55].

ber of mixture components, can represent a intense computational load, which

motivated the usage of parallel and distributed computing techniques in this

work.

The Apache Spark is one of the most modern frameworks for distributed735

computing, and was chosen to be used in this work due to its good performance

in an iterative workload. The computation parallelism for this task could be

achieve by two means:

1. The matrixes computation, mainly those involving high dimensional and

cardinality data, can be done in parallel. Indicated for when the processed740

data can not fit in memory, requiring the data to be distributed over

several machines.

2. Di↵erent models do not have a dependency with one another, and therefore

can be computed entirely in parallel. One example of that situation is on

the training of the PGMM family, where the members are independent745

31

from each other.

As the data dealt in this work is not big enough to require the data distri-

bution, it is believed that the overhead for its implementation and computation

is not worth it, wherefore only the second method of parallelism was used.

Hence, for the final training, a broadcast variable was created with a train-750

ing data set, such that all workers have access to it. Next, a vector of hyper-

parameters (member of the PGMM family, number of mixture components, k,

and number of principal components, q) containing all n desired values to cover

the search is randomly distributed among the workers. The random distribution

is necessary because each trained model have di↵erent complexity, and the ran-755

domness aims to balance the load on each worker. Finally, each worker trains

the models with their associated hyper-parameters and, at the end, the master

collects all values of BIC and chooses the best one.

Figure 9: Distributed training scheme.

4. Validation Results

This section presents the experiment results of the proposed method for the760

fault detection and diagnosis in di↵erent scenarios. Besides the methodology

32

validation, it is also shown a study about that training performance of the

models using Spark’s distributed computations paradigm.

4.1. System Validation with TEP

This subsection describes the experimental results of the proposed method765

using computer simulated process data. This simulated scenario gives full con-

trol of the faults as well as when those faults happen, allowing for a better and

more objective validation of the method.

4.1.1. Tennessee Eastman Process

The proposed method was tested using the Simulink model of the Tennessee770

Eastman Process (TEP) [56] under a decentralised control strategy [57].

The process has five main units, the reactor, condenser, separator, stripper

and compressor, as shown in the Figure 10. The plant has eight components: A,

B, C, D, E, F, G and H. The components A, C, D and E are gaseous reactants

and B is an inert gas which are fed to the reactor, where the liquids G and H775

are produced. The component F is a sub-product of the reactions.

Figure 10: Tennessee Eastman process [56].

The process has 41 measured variables and 12 manipulated variables. Due

33

to a uniformity in the sample period of 6 minutes, only the first 22 measured

variables were used, which are summarised in Table 2. The others 19 measured

variables have di↵erent sample frequency and are measurements of the plant780

components, disabling them for direct usage.

Table 2: TEP’s measured variables used in the analysis.

Variable Description

t(1) Feed A (Stream 1)

t(2) Feed D (Stream 2)

t(3) Feed E (Stream 3)

t(4) Total Feed (Stream 4)

t(5) Recycle Flow (Stream 8)

t(6) Reactor Feed Rate (Stream 6)

t(7) Reactor Pressure

t(8) Reactor Level

t(9) Reactor Temperature

t(10) Purge Rate (Stream 9)

t(11) Product Separator Temperature

t(12) Product Separator Level

t(13) Product Separator Pressure

t(14) Product Separator Underflow (Stream 10)

t(15) Stripper Level

t(16) Strippel Pressure

t(17) Stripper Underflow (Stream 11)

t(18) Stripper Temperature

t(19) Stripper Steam Flow

t(20) Compressor Work

t(21) Reactor Cooling Water Outlet Temperature

t(22) Separator Cooling Water Outlet Temperature

34

T
a
b
le

3
:
T
en

n
ee
ss
ee

E
a
st
m
a
n
p
ro
ce
ss

fa
u
lt
s.

F
au

lt
F
au

lt
T
yp

e
D
et
ec
ti
on

N
o.

M
ix
tu
re

N
o.

P
ri
n
ci
p
al

P
G
M
M

ID
D
es
cr
ip
ti
on

D
el
ay

C
om

p
on

en
ts

C
om

p
on

en
ts

S
tr
u
ct
u
re

1
A
/C

fe
ed

ra
ti
o,

B
co
m
p
os
it
io
n
co
n
-

st
an

t
(S
tr
ea
m

4)

S
te
p

2
13

6
U
U
C

2
B

co
m
p
os
it
io
n
,
A
/C

ra
ti
o
co
n
st
an

t

(S
tr
em

4)

S
te
p

5
4

2
U
C
U

8
A
,B

,C
fe
ed

co
m
p
os
it
io
n
(S
tr
ea
m

4)
R
an

d
om

va
ri
at
io
n

8
14

9
C
U
C

10
C

fe
ed

te
m
p
er
at
u
re

R
an

d
om

va
ri
at
io
n

20
3

3
U
C
U

11
R
ea
ct
or

co
ol
in
g
w
at
er

in
le
t
te
m
p
er
-

at
u
re

R
an

d
om

va
ri
at
io
n

3
7

20
C
U
C

12
C
on

d
en
se
r
co
ol
in
g
w
at
er

in
le
t
te
m
-

p
er
at
u
re

R
an

d
om

va
ri
at
io
n

11
2

3
U
C
U

13
R
ea
ct
io
n
ki
n
et
ic
s

S
lo
w

d
ri
ft

12
16

9
C
U
C

14
R
ec
to
r
co
ol
in
g
w
at
er

va
lv
e

S
ti
ck
in
g

4
2

4
U
C
U

17
U
n
kn

ow
n

U
n
kn

ow
n

17
9

2
U
C
U

18
U
n
kn

ow
n

U
n
kn

ow
n

39
6

2
U
C
U

19
U
n
kn

ow
n

U
n
kn

ow
n

30
3

3
U
C
U

20
U
n
kn

ow
n

U
n
kn

ow
n

26
11

20
C
U
C

35

4.1.2. Isolated Experiments

The simulated model has 21 operation modes, corresponding to one normal

operation and 20 faulty conditions. On the first set of experiments, always

initialising the FDD system with the NOC model, each fault was applied twice785

in a row, so the system could firstly detect and learn the new behaviour and

later diagnose it.

The majority of the operation modes were detected and diagnosed correctly

by the proposed method. The considered faults are summarised in the Table

3, together with the time, in samples, to detect the fault after its start, the790

best number of mixture components and of principal components and the best

member of the PGMM family. To get the best model, the range covered by the

distributed training for all cases was from 1 to 16 number of components, 1 to

20 principal components and all 8 members of the PMM family, leading to a

total of 2560 trained models per scenario. On each case, the model with the795

smallest BIC was selected.

Among the unlisted faults in the Table 3, the Fault 6 was unstable, being

unfeasible for evaluation. The other unlisted faults did not show a significant

change in the distribution of the 22 used measured variables on stationary state,

when comparing with the NOC. In general, it was only detected a quick tran-800

sitory behaviour on the instant the fault started, also making them unfeasible

for testing.

4.2. Sequential Experiment

In the next experiment, a closer to a real scenario was tested. Starting

again with just the model for the NOC, it was applied a sequence of faults,805

as illustrated by the dashed curve in Figure 11. It was applied, in sequence,

the faults 13, 14, 13, 11, 11, and 14, covering the main types of faults in the

process, as described in Table 3, always returning the plant to the NOC between

the faults. Thus, it is expected that with each new fault a new model is trained

and on reoccurrence of the same fault, the system should be able to diagnose it.810

The results can also be seen in Figure 11. The blue dashed line shows the

36

Figure 11: Results of the applied fault sequence.

operation condition at each instant, where the NOC is indexed as zero. The

solid red line shows the output diagnostic system. The green dots represent the

samples used for training a new model, note that they show up only on the first

occurrence of a given fault, which is when the model is trained. Finally, the815

magenta diamond shows when the fault has been detected by the system.

Analysing the obtained results, the methodology has presented the expected

behaviour, detecting and diagnosing the fault correctly.

4.3. Training Experiments

Besides the proposed FDD method, this work also proposed the usage of dis-820

tributed computing for training the models. This section presents some numbers

related to their training performances. Keeping the number of cores fixed, Fig-

ures 12a and 12b show how the time taken to train all models varies accordingly

with the coverage of the number of principal components and number of mixture

components, respectively.825

For the test considering the number of principal components, shown in Fig-

ure 12a, an artificially generated data from a Gaussian mixture model with 5

37

(a) Principal components coverage.

(b) Mixture components coverage.

Figure 12: Training time varying with models hyper-parameters coverage.

components, 30 features and 10000 samples was used. Keeping the coverage for

the number of mixture components fixed, from 1 to 2, as well as the coverage

for all eight PGMM structures. The coverage for the number of principal com-830

ponents was varied from 1 to 2 until from 1 to 28. In other words, for each

test point, the number of trained models increases linearly from 2⇥ 8⇥ 2 = 32

38

until 2 ⇥ 8 ⇥ 28 = 448, where in the point the maximum number of principal

components covered is increased. As expected, it can be seen that the time

taken to train all the model increases approximately linearly.835

A similar analysis is made for the number of mixture components, keeping,

in turn, the coverage for the principal components fixed, from 1 to 2, and varying

the coverage of the number of mixture components from 1 to 2 until from 1 to

16. In this case, as illustrated in Figure 12b, the time taken to train the model

increases approximately exponentially. This is the expected behaviour because840

besides increasing the number of models, their complexity increases in the same

rate, taking to an exponential growth of the time to train the set.

In a final test, keeping the same coverage of the trained models, always with

the same data set, the number of Spark tasks was altered, essentially increasing

the parallelism level. Figure 13 shows the obtained result.845

Figure 13: Training time varying the number of Spark tasks.

Firstly, one can see that with only one task, the performance is much worse,

because the Spark master and worker are executed in the same core, which

reduces the performance. For two tasks until the number of cores of the cluster,

which was 24, the training time reduces approximately linearly with the number

of tasks. From the maximum number of cores, there is a saturation, which is850

39

expected, since the parallelism can not be higher than the number of cores in

the cluster.

Although the obtained result showed a behaviour close to the expected, the

decreasing in the training time was not as big as one would expect, which is a

important point for further investigation. The high overhead for the distributed855

process can have an important role in the observed behaviour, it is expected that

in a scenario with more data, where the overhead time would get proportionally

smaller, a more significant improvement on the training time would be seen.

5. Conclusion

In this work, it was proposed a Fault Detection and Diagnosis (FDD) system860

based on statistical models. The FDD system is based on a family of distribu-

tions of Parsimonious Gaussian Mixture Models (PGMM) where the reduced

number of parameters can be useful in a scenario where few data is available,

such as in faulty operation conditions. Although there is a reduced number of

parameters in the model, there is a huge number of possible models, and choos-865

ing the right one to represent a given operation condition is still an open issue

in the research community. For that, it was also proposed to used distributed

computing techniques to train a large number of di↵erent models and, later,

choosing the best one.

The numerical results showed a good performance of the proposed FDD870

method, detecting and diagnosing correctly a fault. Furthermore, using the

power of distributed computing appears to be a good solution for training a

larger number of models, specially in a scenario where computation power has

been getting ever so inexpensive.

The proposed FDD system can be improved in two main fronts. The first875

would be in developing a probabilistic contribution analysis of the variables,

allowing not only the detection of a fault, but also indicating of the most re-

sponsible variables, which would help the operator in diagnosing the problem.

Furthermore, an online adaptive training of the models would help increase the

40

automation level of the system, since it would be able to identify natural changes880

of the process.

During the development of this work, it was not necessary the usage of data

parallelism, since they were not large enough to justify its usage. But the de-

velopment of a training strategy involving both data and processing parallelism

could bring significant improvement in the training time, specially if the data885

gets very large.

Finally, the robustness of the method still needs further validation on a real

process scenario, where greater noise and uncertainties make the FDD task more

di�cult.

Acknowledgement890

The authors acknowledge the support of Petrobras, CNPq (National Counsel

of Technological and Scientific Development) and FAPEMIG (Research Foun-

dation of the State of Minas Gerais).

References

[1] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri, A review895

of process fault detection and diagnosis: Part I: Quantitative Model-based

Methods, Computers & Chemical Engineering 27 (2003) 293–311. doi:

10.1016/S0098-1354(02)00160-6.

[2] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, A review of

process fault detection and diagnosis: Part II: Qualitative models and900

search strategies, Computers & Chemical Engineering 27 (2003) 313–326.

doi:10.1016/S0098-1354(02)00161-8.

URL http://www.sciencedirect.com/science/article/pii/

S0098135402001618

[3] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, K. Yin, A905

review of process fault detection and diagnosis: Part III: Process history

41

http://dx.doi.org/10.1016/S0098-1354(02)00160-6
http://dx.doi.org/10.1016/S0098-1354(02)00160-6
http://dx.doi.org/10.1016/S0098-1354(02)00160-6
http://www.sciencedirect.com/science/article/pii/S0098135402001618
http://www.sciencedirect.com/science/article/pii/S0098135402001618
http://www.sciencedirect.com/science/article/pii/S0098135402001618
http://www.sciencedirect.com/science/article/pii/S0098135402001618
http://www.sciencedirect.com/science/article/pii/S0098135402001618
http://dx.doi.org/10.1016/S0098-1354(02)00161-8
http://www.sciencedirect.com/science/article/pii/S0098135402001618
http://www.sciencedirect.com/science/article/pii/S0098135402001618
http://www.sciencedirect.com/science/article/pii/S0098135402001618
http://www.sciencedirect.com/science/article/pii/S009813540200162X
http://www.sciencedirect.com/science/article/pii/S009813540200162X
http://www.sciencedirect.com/science/article/pii/S009813540200162X
http://www.sciencedirect.com/science/article/pii/S009813540200162X
http://www.sciencedirect.com/science/article/pii/S009813540200162X

based methods, Computers & Chemical Engineering 27 (2003) 327–346.

doi:10.1016/S0098-1354(02)00162-X.

URL http://www.sciencedirect.com/science/article/pii/

S009813540200162X910

[4] A. Shui, W. Chen, P. Zhang, S. Hu, X. Huang, Review of fault diagnosis

in control systems, 2009 Chinese Control and Decision Conference (2009)

5324–5329doi:10.1109/CCDC.2009.5195065.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5195065915

[5] L. F. Mendonça, J. M. C. Sousa, J. M. G. Sá da Costa, An architecture for

fault detection and isolation based on fuzzy methods, Expert Systems with

Applications 36 (2009) 1092–1104. doi:10.1016/j.eswa.2007.11.009.

[6] A. Lemos, W. Caminhas, F. Gomide, Adaptive fault detection and

diagnosis using an evolving fuzzy classifier, Information Sciences 220920

(2013) 64–85. doi:10.1016/j.ins.2011.08.030.

URL http://linkinghub.elsevier.com/retrieve/pii/

S002002551100449X

[7] B. Samanta, Gear fault detection using artificial neural networks and sup-

port vector machines with genetic algorithms, Mechanical Systems and Sig-925

nal Processing 18 (2004) 625–644. doi:10.1016/S0888-3270(03)00020-7.

[8] C. A. Laurentys, R. M. Palhares, W. M. Caminhas, Design of an artificial

immune system based on Danger Model for fault detection, Expert Systems

with Applications 37 (7) (2010) 5145–5152. doi:10.1016/j.eswa.2009.

12.079.930

URL http://dx.doi.org/10.1016/j.eswa.2009.12.079

[9] C. A. Laurentys, R. M. Palhares, W. M. Caminhas, A novel artificial im-

mune system for fault behavior detection, Expert Systems with Applica-

tions 38 (6) (2011) 6957–6966. doi:10.1016/j.eswa.2010.12.019.

URL http://dx.doi.org/10.1016/j.eswa.2010.12.019935

42

http://www.sciencedirect.com/science/article/pii/S009813540200162X
http://www.sciencedirect.com/science/article/pii/S009813540200162X
http://dx.doi.org/10.1016/S0098-1354(02)00162-X
http://www.sciencedirect.com/science/article/pii/S009813540200162X
http://www.sciencedirect.com/science/article/pii/S009813540200162X
http://www.sciencedirect.com/science/article/pii/S009813540200162X
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5195065
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5195065
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5195065
http://dx.doi.org/10.1109/CCDC.2009.5195065
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5195065
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5195065
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5195065
http://dx.doi.org/10.1016/j.eswa.2007.11.009
http://linkinghub.elsevier.com/retrieve/pii/S002002551100449X
http://linkinghub.elsevier.com/retrieve/pii/S002002551100449X
http://linkinghub.elsevier.com/retrieve/pii/S002002551100449X
http://dx.doi.org/10.1016/j.ins.2011.08.030
http://linkinghub.elsevier.com/retrieve/pii/S002002551100449X
http://linkinghub.elsevier.com/retrieve/pii/S002002551100449X
http://linkinghub.elsevier.com/retrieve/pii/S002002551100449X
http://dx.doi.org/10.1016/S0888-3270(03)00020-7
http://dx.doi.org/10.1016/j.eswa.2009.12.079
http://dx.doi.org/10.1016/j.eswa.2009.12.079
http://dx.doi.org/10.1016/j.eswa.2009.12.079
http://dx.doi.org/10.1016/j.eswa.2009.12.079
http://dx.doi.org/10.1016/j.eswa.2009.12.079
http://dx.doi.org/10.1016/j.eswa.2009.12.079
http://dx.doi.org/10.1016/j.eswa.2009.12.079
http://dx.doi.org/10.1016/j.eswa.2010.12.019
http://dx.doi.org/10.1016/j.eswa.2010.12.019
http://dx.doi.org/10.1016/j.eswa.2010.12.019
http://dx.doi.org/10.1016/j.eswa.2010.12.019
http://dx.doi.org/10.1016/j.eswa.2010.12.019

[10] D. Kim, I.-B. Lee, Process monitoring based on probabilistic PCA,

Chemometrics and Intelligent Laboratory Systems 67 (2) (2003) 109–123.

doi:10.1016/S0169-7439(03)00063-7.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0169743903000637940

[11] N. Mehranbod, M. Soroush, C. Panjapornpon, A method of sensor fault

detection and identification, Journal of Process Control 15 (2005) 321–339.

doi:10.1016/j.jprocont.2004.06.009.

[12] M. F. D’Angelo, R. M. Palhares, R. H. Takahashi, R. H. Loschi,

L. M. Baccarini, W. M. Caminhas, Incipient fault detection in in-945

duction machine stator-winding using a fuzzy-Bayesian change point

detection approach, Applied Soft Computing 11 (1) (2011) 179–192.

doi:10.1016/j.asoc.2009.11.008.

URL http://linkinghub.elsevier.com/retrieve/pii/

S156849460900221X950

[13] L. Dobos, J. Abonyi, On-line detection of homogeneous operation

ranges by dynamic principal component analysis based time-series

segmentation, Chemical Engineering Science 75 (2012) 96–105.

doi:10.1016/j.ces.2012.02.022.

URL http://linkinghub.elsevier.com/retrieve/pii/955

S0009250912001182

[14] C. Angeli, A. Chatzinikolaou, On-line fault detection techniques for tech-

nical systems: a survey, International Journal of Computer Science & Ap-

plications; I (1) (2004) 12 – 30.

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.960

100.6189&rep=rep1&type=pdf

[15] S. Joe Qin, Statistical process monitoring: basics and beyond, Journal of

Chemometrics 17 (2003) 480–502. doi:10.1002/cem.800.

URL http://onlinelibrary.wiley.com/doi/10.1002/cem.800/

43

http://linkinghub.elsevier.com/retrieve/pii/S0169743903000637
http://dx.doi.org/10.1016/S0169-7439(03)00063-7
http://linkinghub.elsevier.com/retrieve/pii/S0169743903000637
http://linkinghub.elsevier.com/retrieve/pii/S0169743903000637
http://linkinghub.elsevier.com/retrieve/pii/S0169743903000637
http://dx.doi.org/10.1016/j.jprocont.2004.06.009
http://linkinghub.elsevier.com/retrieve/pii/S156849460900221X
http://linkinghub.elsevier.com/retrieve/pii/S156849460900221X
http://linkinghub.elsevier.com/retrieve/pii/S156849460900221X
http://linkinghub.elsevier.com/retrieve/pii/S156849460900221X
http://linkinghub.elsevier.com/retrieve/pii/S156849460900221X
http://dx.doi.org/10.1016/j.asoc.2009.11.008
http://linkinghub.elsevier.com/retrieve/pii/S156849460900221X
http://linkinghub.elsevier.com/retrieve/pii/S156849460900221X
http://linkinghub.elsevier.com/retrieve/pii/S156849460900221X
http://linkinghub.elsevier.com/retrieve/pii/S0009250912001182
http://linkinghub.elsevier.com/retrieve/pii/S0009250912001182
http://linkinghub.elsevier.com/retrieve/pii/S0009250912001182
http://linkinghub.elsevier.com/retrieve/pii/S0009250912001182
http://linkinghub.elsevier.com/retrieve/pii/S0009250912001182
http://dx.doi.org/10.1016/j.ces.2012.02.022
http://linkinghub.elsevier.com/retrieve/pii/S0009250912001182
http://linkinghub.elsevier.com/retrieve/pii/S0009250912001182
http://linkinghub.elsevier.com/retrieve/pii/S0009250912001182
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.6189&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.6189&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.6189&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.6189&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.6189&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.6189&rep=rep1&type=pdf
http://dx.doi.org/10.1002/cem.800

abstract$\delimiter"026E30F$nhttp://onlinelibrary.wiley.com/965

store/10.1002/cem.800/asset/800_ftp.pdf?v=1&t=hcmg2etn&s=

8ad2049be22a258774d1524922e72d11c5425ff0

[16] J. E. Jackson, G. S. Mudholkar, Control Procedures for Residuals Asso-

ciated with Principal Component Analysis, Technometrics 21 (3) (1979)

341–349. doi:10.1080/00401706.1979.10489779.970

URL http://www.jstor.org/stable/1267757

[17] T. Villegas, M. Fuente, M. Rodŕıguez, Principal component analysis for

fault detection and diagnosis. experience with a pilot plant, Proceedings of

the 9th WSEAS International Conference on Computational Intelligence,

Man-machine Systems and Cybernetics (2010) 147–152.975

URL http://www.wseas.us/e-library/conferences/2010/Merida/

CIMMACS/CIMMACS-20.pdf

[18] M. E. Tipping, C. M. Bishop, Probabilistic Principal Component Analysis,

Journal of the Royal Statistical Society: Series B (Statistical Methodology)

61 (3) (1999) 611–622. doi:10.1111/1467-9868.00196.980

URL http://dx.doi.org/10.1111/1467-9868.00196

[19] M. E. Tipping, C. M. Bishop, Mixtures of probabilistic principal compo-

nent analyzers, Neural computation 11 (1999) 443–482. doi:10.1162/

089976699300016728.

[20] P. D. McNicholas, T. B. Murphy, Parsimonious Gaussian Mixture Mod-985

els, Statistics and Computing 18 (3) (2008) 285–296. doi:10.1007/

s11222-008-9056-0.

[21] B. He, X. Yang, T. Chen, J. Zhang, Reconstruction-based multivari-

ate contribution analysis for fault isolation: A branch and bound

approach, Journal of Process Control 22 (7) (2012) 1228–1236.990

doi:10.1016/j.jprocont.2012.05.010.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0959152412001254

44

http://www.jstor.org/stable/1267757
http://www.jstor.org/stable/1267757
http://www.jstor.org/stable/1267757
http://dx.doi.org/10.1080/00401706.1979.10489779
http://www.jstor.org/stable/1267757
http://www.wseas.us/e-library/conferences/2010/Merida/CIMMACS/CIMMACS-20.pdf
http://www.wseas.us/e-library/conferences/2010/Merida/CIMMACS/CIMMACS-20.pdf
http://www.wseas.us/e-library/conferences/2010/Merida/CIMMACS/CIMMACS-20.pdf
http://www.wseas.us/e-library/conferences/2010/Merida/CIMMACS/CIMMACS-20.pdf
http://www.wseas.us/e-library/conferences/2010/Merida/CIMMACS/CIMMACS-20.pdf
http://www.wseas.us/e-library/conferences/2010/Merida/CIMMACS/CIMMACS-20.pdf
http://dx.doi.org/10.1111/1467-9868.00196
http://dx.doi.org/10.1111/1467-9868.00196
http://dx.doi.org/10.1111/1467-9868.00196
http://dx.doi.org/10.1162/089976699300016728
http://dx.doi.org/10.1162/089976699300016728
http://dx.doi.org/10.1162/089976699300016728
http://dx.doi.org/10.1007/s11222-008-9056-0
http://dx.doi.org/10.1007/s11222-008-9056-0
http://dx.doi.org/10.1007/s11222-008-9056-0
http://linkinghub.elsevier.com/retrieve/pii/S0959152412001254
http://linkinghub.elsevier.com/retrieve/pii/S0959152412001254
http://linkinghub.elsevier.com/retrieve/pii/S0959152412001254
http://linkinghub.elsevier.com/retrieve/pii/S0959152412001254
http://linkinghub.elsevier.com/retrieve/pii/S0959152412001254
http://dx.doi.org/10.1016/j.jprocont.2012.05.010
http://linkinghub.elsevier.com/retrieve/pii/S0959152412001254
http://linkinghub.elsevier.com/retrieve/pii/S0959152412001254
http://linkinghub.elsevier.com/retrieve/pii/S0959152412001254

[22] C. Biernacki, G. Celeux, G. Govaert, F. Langrognet, Model-based clus-

ter and discriminant analysis with the MIXMOD software, Computational995

Statistics and Data Analysis 51 (2006) 587–600. doi:10.1016/j.csda.

2005.12.015.

[23] C. Biernacki, G. Celeux, G. Govaert, Choosing starting values for the EM

algorithm for getting the highest likehood in multivariate Gaussian mixture

models, Computational Statistics and Data Analysis 41 (2003) 561–575.1000

doi:10.1016/S0167-9473(02)00163-9.

[24] D. Karlis, E. Xekalaki, Choosing initial values for the EM algorithm for

finite mixtures, Computational Statistics and Data Analysis 41 (2003) 577–

590. doi:10.1016/S0167-9473(02)00177-9.

[25] V. Melnykov, I. Melnykov, Initializing the em algorithm in Gaussian mix-1005

ture models with an unknown number of components, Computational

Statistics and Data Analysis 56 (6) (2012) 1381–1395. doi:10.1016/j.

csda.2011.11.002.

URL http://dx.doi.org/10.1016/j.csda.2011.11.002

[26] N. Greggio, A. Bernardino, P. Dario, J. Santos-Victor, E�cient greedy1010

estimation of mixture models through a binary tree search, Robotics and

Autonomous Systems 62 (10) (2014) 1440–1452. doi:10.1016/j.robot.

2014.05.016.

URL http://dx.doi.org/10.1016/j.robot.2014.05.016

[27] L. Li, J. Ma, A BYY scale-incremental EM algorithm for Gaussian mixture1015

learning, Applied Mathematics and Computation 205 (2) (2008) 832–840.

doi:10.1016/j.amc.2008.05.076.

URL http://dx.doi.org/10.1016/j.amc.2008.05.076

[28] M. E. Musa, D. de Ridder, R. P. Duin, V. Atalay, Almost autonomous

training of mixtures of principal component analyzers, Pattern Recognition1020

Letters 25 (9) (2004) 1085–1095. doi:10.1016/j.patrec.2004.03.019.

45

http://dx.doi.org/10.1016/j.csda.2005.12.015
http://dx.doi.org/10.1016/j.csda.2005.12.015
http://dx.doi.org/10.1016/j.csda.2005.12.015
http://dx.doi.org/10.1016/S0167-9473(02)00163-9
http://dx.doi.org/10.1016/S0167-9473(02)00177-9
http://dx.doi.org/10.1016/j.csda.2011.11.002
http://dx.doi.org/10.1016/j.csda.2011.11.002
http://dx.doi.org/10.1016/j.csda.2011.11.002
http://dx.doi.org/10.1016/j.csda.2011.11.002
http://dx.doi.org/10.1016/j.csda.2011.11.002
http://dx.doi.org/10.1016/j.csda.2011.11.002
http://dx.doi.org/10.1016/j.csda.2011.11.002
http://dx.doi.org/10.1016/j.robot.2014.05.016
http://dx.doi.org/10.1016/j.robot.2014.05.016
http://dx.doi.org/10.1016/j.robot.2014.05.016
http://dx.doi.org/10.1016/j.robot.2014.05.016
http://dx.doi.org/10.1016/j.robot.2014.05.016
http://dx.doi.org/10.1016/j.robot.2014.05.016
http://dx.doi.org/10.1016/j.robot.2014.05.016
http://dx.doi.org/10.1016/j.amc.2008.05.076
http://dx.doi.org/10.1016/j.amc.2008.05.076
http://dx.doi.org/10.1016/j.amc.2008.05.076
http://dx.doi.org/10.1016/j.amc.2008.05.076
http://dx.doi.org/10.1016/j.amc.2008.05.076
http://linkinghub.elsevier.com/retrieve/pii/S0167865504000728
http://linkinghub.elsevier.com/retrieve/pii/S0167865504000728
http://linkinghub.elsevier.com/retrieve/pii/S0167865504000728
http://dx.doi.org/10.1016/j.patrec.2004.03.019

URL http://linkinghub.elsevier.com/retrieve/pii/

S0167865504000728

[29] J. J. Verbeek, N. Vlassis, B. Kröse, E�cient greedy learning of gaussian

mixture models., Neural computation 15 (2) (2003) 469–85. doi:10.1162/1025

089976603762553004.

URL http://www.ncbi.nlm.nih.gov/pubmed/12590816

[30] Z. Zivkovic, F. Van der Heijden, Recursive unsupervised learning of finite

mixture models, IEEE Transactions on Pattern Analysis and Machine In-

telligence 26 (3) (2004) 651–656. doi:10.1109/TPAMI.2004.1273970.1030

[31] A. Fassò, M. Cameletti, The EM algorithm in a distributed

computing environment for modelling environmental space-time

data, Environmental Modelling Software 24 (9) (2009) 1027–1035.

doi:10.1016/j.envsoft.2009.02.009.

URL http://linkinghub.elsevier.com/retrieve/pii/1035

S1364815209000413

[32] C. L. Philip Chen, C. Y. Zhang, Data-intensive applications, challenges,

techniques and technologies: A survey on Big Data, Information Sciences

275 (2014) 314–347. doi:10.1016/j.ins.2014.01.015.

URL http://dx.doi.org/10.1016/j.ins.2014.01.0151040

[33] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:

Cluster computing with working sets, in: Proceedings of the 2Nd USENIX

Conference on Hot Topics in Cloud Computing, HotCloud’10, USENIX

Association, Berkeley, CA, USA, 2010, pp. 10–10.

URL http://dl.acm.org/citation.cfm?id=1863103.18631131045

[34] M. Zaharia, M. Chowdhury, T. Das, A. Dave, Resilient dis-

tributed datasets: A fault-tolerant abstraction for in-memory clus-

ter computing, NSDI’12 Proceedings of the 9th USENIX confer-

ence on Networked Systems Design and Implementation (2012) 2–

2doi:10.1111/j.1095-8649.2005.00662.x.1050

46

http://linkinghub.elsevier.com/retrieve/pii/S0167865504000728
http://linkinghub.elsevier.com/retrieve/pii/S0167865504000728
http://linkinghub.elsevier.com/retrieve/pii/S0167865504000728
http://www.ncbi.nlm.nih.gov/pubmed/12590816
http://www.ncbi.nlm.nih.gov/pubmed/12590816
http://www.ncbi.nlm.nih.gov/pubmed/12590816
http://dx.doi.org/10.1162/089976603762553004
http://dx.doi.org/10.1162/089976603762553004
http://dx.doi.org/10.1162/089976603762553004
http://www.ncbi.nlm.nih.gov/pubmed/12590816
http://dx.doi.org/10.1109/TPAMI.2004.1273970
http://linkinghub.elsevier.com/retrieve/pii/S1364815209000413
http://linkinghub.elsevier.com/retrieve/pii/S1364815209000413
http://linkinghub.elsevier.com/retrieve/pii/S1364815209000413
http://linkinghub.elsevier.com/retrieve/pii/S1364815209000413
http://linkinghub.elsevier.com/retrieve/pii/S1364815209000413
http://dx.doi.org/10.1016/j.envsoft.2009.02.009
http://linkinghub.elsevier.com/retrieve/pii/S1364815209000413
http://linkinghub.elsevier.com/retrieve/pii/S1364815209000413
http://linkinghub.elsevier.com/retrieve/pii/S1364815209000413
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://dx.doi.org/10.1111/j.1095-8649.2005.00662.x

URL https://www.usenix.org/system/files/conference/nsdi12/

nsdi12-final138.pdf

[35] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey

on concept drift adaptation, ACM Computing Surveys 46 (4) (2014) 1–37.

doi:10.1145/2523813.1055

URL http://dl.acm.org/citation.cfm?id=2523813

[36] M. R. Maurya, R. Rengaswamy, V. Venkatasubramanian, Fault diagno-

sis using dynamic trend analysis: A review and recent developments,

Engineering Applications of Artificial Intelligence 20 (2) (2007) 133–146.

doi:10.1016/j.engappai.2006.06.020.1060

[37] H. Hotelling, Analysis of a complex of statistical variables into principal

components, Journal of Educational Psychology 24 (1933) 417–441 and

498–520.

[38] D. A. Jackson, Stopping rules in principal components analysis: A compari-

son of heuristical and statistical approaches (1993). doi:10.2307/1939574.1065

[39] H. Hotelling, The generalization of Student’s ratio, The Annals of Mathe-

matical Statistics 2 (3) (1931) 360–378.

[40] J. Mina, C. Verde, Fault detection using dynamic principal component

analysis by average estimation, 2005 2nd International Conference on Elec-

trical and Electronics Engineering (Cie) (2005) 374–377. doi:10.1109/1070

ICEEE.2005.1529647.

[41] M. Guerfel, K. Othman, M. Benrejeb, On the structure determi-

nation of a dynamic PCA model using sensitivity of fault detec-

tion, Advanced Control of Chemical Processes 7 (2) (2009) 958–963.

doi:10.3182/20090712-4-TR-2008.00157.1075

URL http://www.nt.ntnu.no/users/skoge/prost/proceedings/

adchem09/cd/abstract/153.pdf

47

https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://dl.acm.org/citation.cfm?id=2523813
http://dl.acm.org/citation.cfm?id=2523813
http://dl.acm.org/citation.cfm?id=2523813
http://dx.doi.org/10.1145/2523813
http://dl.acm.org/citation.cfm?id=2523813
http://dx.doi.org/10.1016/j.engappai.2006.06.020
http://dx.doi.org/10.2307/1939574
http://dx.doi.org/10.1109/ICEEE.2005.1529647
http://dx.doi.org/10.1109/ICEEE.2005.1529647
http://dx.doi.org/10.1109/ICEEE.2005.1529647
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adchem09/cd/abstract/153.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adchem09/cd/abstract/153.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adchem09/cd/abstract/153.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adchem09/cd/abstract/153.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adchem09/cd/abstract/153.pdf
http://dx.doi.org/10.3182/20090712-4-TR-2008.00157
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adchem09/cd/abstract/153.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adchem09/cd/abstract/153.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adchem09/cd/abstract/153.pdf

[42] Z. Bankó, L. Dobos, J. Abonyi, Dynamic Principal Component Analysis in

Multivariate Time-Series Segmentation, Conservation, Information, Evolu-

tion 1 (1) (2011) 11–24.1080

URL http://journal.ke.hu/cie/index.php/cie/article/view/25

[43] W. Ku, R. H. Storer, C. Georgakis, Disturbance detection and isolation

by dynamic principal component analysis, Chemometrics and Intelligent

Laboratory Systems 30 (1) (1995) 179–196. doi:10.1016/0169-7439(95)

00076-3.1085

[44] S. Ghemawat, H. Gobio↵, S.-T. Leung, The Google file system, ACM

SIGOPS Operating Systems Review 37 (5) (2003) 29. doi:10.1145/

1165389.945450.

[45] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file

system, in: Proceedings of the 2010 IEEE 26th Symposium on Mass Storage1090

Systems and Technologies (MSST), MSST ’10, IEEE Computer Society,

Washington, DC, USA, 2010, pp. 1–10. doi:10.1109/MSST.2010.5496972.

URL http://dx.doi.org/10.1109/MSST.2010.5496972

[46] H. Garraway, Parallel Computer Architecture: A Hardware/Software Ap-

proach, IEEE Concurrency 7 (2). doi:10.1109/MCC.1999.766975.1095

[47] M. J. Quinn, Parallel Programming in C with MPI and OpenMP, Vol. 1,

McGraw-Hill, 2003.

[48] M. J. Flynn, Some Computer Organizations and Their E↵ectiveness, IEEE

Transactions on Computers C-21 (9) (1972) 948–960. doi:10.1109/TC.

1972.5009071.1100

[49] J. Dean, S. Ghemawat, MapReduce: Simplied Data Processing on Large

Clusters, Symposium on Operating Systems Design and Implementation 6

(2004) 137–149. doi:10.1145/1327452.1327492.

48

http://journal.ke.hu/cie/index.php/cie/article/view/25
http://journal.ke.hu/cie/index.php/cie/article/view/25
http://journal.ke.hu/cie/index.php/cie/article/view/25
http://journal.ke.hu/cie/index.php/cie/article/view/25
http://dx.doi.org/10.1016/0169-7439(95)00076-3
http://dx.doi.org/10.1016/0169-7439(95)00076-3
http://dx.doi.org/10.1016/0169-7439(95)00076-3
http://dx.doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MCC.1999.766975
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1145/1327452.1327492

[50] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, K. Olukotun,

Map-Reduce for Machine Learning on Multicore, Advances in Neural In-1105

formation Processing Systems 19 (2007) 281–288. doi:10.1234/12345678.

[51] D. Gillick, A. Faria, J. DeNero, MapReduce : Distributed Computing for

Machine Learning, Icsiberkeleyedu (2006) 1–12.

URL http://roger-data.googlecode.com/svn-history/r14/trunk/

mapred/gillick_cs262a_proj.pdf1110

[52] X.-L. Meng, D. Van Dyk, The em algorithman old folk-song sung to a fast

new tune, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 59 (3) (1997) 511–567. doi:10.1111/1467-9868.00082.

URL http://dx.doi.org/10.1111/1467-9868.00082

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,1115

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn:

Machine learning in Python, Journal of Machine Learning Research 12

(2011) 2825–2830.

[54] T. Chen, J. Morris, E. Martin, Probability Density Estimation via an Infi-1120

nite Gaussian Mixture Model: Application to Statistical Process Monitor-

ing, J ROY SOC C-APP 55 (2006) 699–715.

[55] T. A. Nakamura, A. P. Lemos, A batch-incremental process fault detection

and diagnosis using mixtures of probabilistic PCA, IEEE Conference on

Evolving and Adaptive Intelligent Systems 2014 (2014) 1–8. doi:10.1109/1125

EAIS.2014.6867472.

[56] J. J. Downs, E. F. Vogel, A plant-wide industrial process control problem,

Computers & Chemical Engineering 17 (1993) 245–255.

[57] N. L. Ricker, Decentralized control of the Tennessee Eastman challenge

process, Journal of Process Control 6 (1996) 205–221.1130

49

http://dx.doi.org/10.1234/12345678
http://roger-data.googlecode.com/svn-history/r14/trunk/mapred/gillick_cs262a_proj.pdf
http://roger-data.googlecode.com/svn-history/r14/trunk/mapred/gillick_cs262a_proj.pdf
http://roger-data.googlecode.com/svn-history/r14/trunk/mapred/gillick_cs262a_proj.pdf
http://roger-data.googlecode.com/svn-history/r14/trunk/mapred/gillick_cs262a_proj.pdf
http://roger-data.googlecode.com/svn-history/r14/trunk/mapred/gillick_cs262a_proj.pdf
http://roger-data.googlecode.com/svn-history/r14/trunk/mapred/gillick_cs262a_proj.pdf
http://dx.doi.org/10.1111/1467-9868.00082
http://dx.doi.org/10.1111/1467-9868.00082
http://dx.doi.org/10.1111/1467-9868.00082
http://dx.doi.org/10.1111/1467-9868.00082
http://dx.doi.org/10.1111/1467-9868.00082
http://dx.doi.org/10.1109/EAIS.2014.6867472
http://dx.doi.org/10.1109/EAIS.2014.6867472
http://dx.doi.org/10.1109/EAIS.2014.6867472

	Introduction
	Literature Review
	Fault Detection and Diagnosis
	Desired Characteristic of a FDD System
	FDD Methods and Models

	Modelling
	Expert Systems
	Trend Analysis
	Artificial Neural Network
	Statistical Models
	Principal Component Analysis
	Probabilistic Principal Component Analysis
	Parsimonious Gaussian Mixture Models
	Dynamic Principal Component Analysis

	Parallel and Distributed Computing
	Basic Concepts
	Beowulf Architecture
	Cluster Based Computing

	Methodology
	Modelling
	Training the PGMM
	Model Selection
	Monitoring Statistics and its Threshold

	Adaptive Fault Detection and Diagnosis
	Distributed Training

	Validation Results
	System Validation with TEP
	Tennessee Eastman Process
	Isolated Experiments

	Sequential Experiment
	Training Experiments

	Conclusion

